NOTE 216 — Lattice Expression Language Implementation

Neil Killeen (ATNF) and Ger van Diepen (NFRA)

1998 January 20

1 Introduction

The Lattice Expression Language (just a fancy name for some C++ classes !) allows manipulation
of mathematical expressions involving Lattices directly from C++. The Lattices involved in the
expressions are iterated through tile by tile, and the expression evaluated for each pixel in the tiles. Thus
there are no large temporary Lattices, and the iteration is efficient.

LEL offers many of the standard numerical and logical operators and functions (that can be applied
to scalars and Arrays), as well as some additional astronomically oriented ones. It can handle Float,
Double, Complex and DComplex Lattices, including expressions involving mixtures of these types of
Lattices. Conversion of data types is automatic, although the user can also embed explicit conversions.

The user can build expressions from subexpressions, finally evaluating the final expression.

Throughout this document we will refer to objects of class Lattice. In reality, this is an abstract class
and the real objects would be derived from it.

2 Class Structures

The expression is parsed, by the compiler, into a tree, and the nodes of the tree are built with the LEL
classes. The tree is also evaluated with the LEL classes.

LEL is implemented with a Letter/Envelope scheme. The relational structure between the classes is
straightforward. The Envelope class is LatticeExpr. LatticeExpr invokes LatticeExprNode, which
provides a bridge from LatticeExpr to the letter classes LELBinary, LELBinaryCmp, LELBinaryBool,
LELConvert, LELFunction1D, LELFunctionND, LELFunctionReal 1D, LELFunctionFloat, LELFunctionDouble,
LELFunctionComplex, LELFunctionDComplex, LELFunctionBool, LELLattice, LELUnaryConst, LELUnary,
and LELUnaryBool. The letter classes all inherit from LELInterface which defines their common inter-

face. There is one more class, LELAttribute, which is a helper class containing some attribute information
about the expression.

The purpose of the bridge class, LatticeExprNode is to handle type conversions. If all the data were of
the same type (e.g. Float) we would not need the bridge class and LatticeExpr would directly invoke
the letter classes.

The user is exposed to the classes LatticeExpr and LatticeExprNode. Exposure to LatticeExpr is
largely implicit (see later). Use of LatticeExprNode may be explicit if subexpression manipulation is
desired.

The classes are

LEL Classes

Class Source files templation | inheritance use
LatticeExpr LatticeExpr.{h,cc} <T> Lattice< T > Envelope
LatticeExprNode LatticeExprNode.{h,cc} | none none bridge
LELAttribute LELAttribute.{h,cc} none none helper
LELInterface LELInterface.{h,cc} <T> none Base class
LELBinaryEnums LELBinaryEnums.h none none Enum
LELBinary LELBinary.{h,cc} <T> LELInterface< T' > letter class
LELBinaryCmp LELBinary.{h,cc} <T> LELInterface<Bool> letter class
LELBinaryBool LELBinary{.h,2.cc} none LELInterface<Bool> letter class
LELConvert LELConvert.{h,cc} <T,F > | LELInterface< T > letter class
LELFunctionEnums LELFunctionEnums.h none none enum
LELFunction1D LELFunction.{h,cc} <T> LELInterface< T > letter class
LELFunctionND LELFunction.{h,cc} <T> LELInterface< 1" > letter class
LELFunctionReallD LELFunction.{h,cc} <T> LELInterface< T' > letter class
LELFunctionFloat LELFunction{.h,2.cc} none LELInterface<Float> letter class
LELFunctionDouble LELFunction{.h,2.cc} none LELInterface<Double> letter class
LELFunctionComplex | LELFunction{.h,2.cc} none LELInterface<Complex> | letter class
LELFunctionDComplex | LELFunction{.h,2.cc} none LELInterface<DComplex> | letter class
LELFunctionBool LELFunction{.h,2.cc} none LELInterface<Bool> letter class
LELLattice LELLattice.{h,cc} <T> LELInterface< T' > letter class
LELUnaryEnums LELUnaryEnums.h none none enum
LELUnaryConst LELUnary.{h,cc} <T> LELInterface< T > letter class
LELUnary LELUnary.{h,cc} <T> LELInterface< T > letter class
LELUnaryBool LELUnary{.h,2.cc} none LELInterface<Bool> letter class

3 How It Works

Let us look at an example expression and examined how the system works.

For example,

Lattice<Float> a;
Lattice<Float> b;
Lattice<Double> c;
a.copyData(b+c) ;

Thus, we evaluate the sum of the Lattices b and c and fill the Lattice a with the result. Note that
the result of b+c is a Double Lattice which will be assigned to a Float Lattice.

There are two distinct steps in this; the first is the creation of the expression tree. The second is the
evaluation of the tree after its creation. Both occur at run time; the creation first, and then, via the
copyData call, the evaluation.

The tree is a structure which can be thought of as representing the hierarchy of operations. For our
example above, it looks like

Really, b and ¢ are not operations, the actual software operation is something that gets the values of the
Lattice into core from the Lattice. The tree is more accurately written as

getLatticeValues getLatticeValues
b c

but we will use the short-hand tree expression style.

A more complex expression like (a+sin(b)+2) / 10 would be

/
+ 10.0

sin 2.0
b

The tree is evaluated bottom up. Conceptually, the sin of the Lattice b is evaluated and 2.0 added to
the resultant Lattice. Then that is added to the Lattice a, and that resultant Lattice is divided by
10.0.

3.1 Tree Creation

Let us consider the creation of the expression tree first. The Lattice::copyData member function
expects as its argument a Lattice. Thus, the expression in the argument has to find a way to be
converted to a Lattice. It is the LatticeExpr class that knows how to evaluate expressions involving
Lattices, and LatticeExpr inherits from Lattice. So any LatticeExpr object is a valid argument for
the copyData call. We need to show that b+c is a Lattice; in this case a LatticeExpr object, derived
from Lattice.

Internally, LatticeExpr contains a LatticeExprNode object, so let us consider class LatticeExprNode
first. LatticeExprNode exists to handle type conversions for mixed type expressions. It is a non-
templated class and is not derived from any other class. It contains, as private data members, a variety
of pointers to the class LELInterface. LELInterface is an abstract base class, from which are derived
concrete classes. These derived classes are constructed in the tree, and when the expression is evaluated,
they enable one to evaluate expressions such as binary expressions, or functions, or get chunks of a
Lattice etc. These derived classes are (mostly) templated, and the LatticeExprNode class contains
one LELInterface pointer object for each conceivable type (Float, Double, Complex, and DComplex).
The appropriate type for the LELInterface pointer and the templated derived LELInterface object it
is pointing to is the type of the data that it is manipulating. For example, if a LELLattice object is
constructed from a Lattice<Float> then the appropriate type is Float.

Now, expressions like b and ¢ can be converted to LatticeExprNode objects via constructors such as

LatticeExprNode(const Lattice<Float>& lattice);
LatticeExprNode(const Lattice<Double>& lattice);

Recall that the LatticeExprNode object contains private data members (LELInterface pointers) of
many different types. Only the data member of the relevant type will be assigned. For example, the
Float constructor looks like

LatticeExprNode: :LatticeExprNode (const Lattice<Float>& lattice)
: donePrepare_p (False),

dtype_p (TpFloat),

pExprFloat_p (new LELLattice<Float> (lattice))
{

pAttr_p = &pExprFloat_p->getAttribute();

The constructor notes that no optimizations (see later) have been performed, and also notes what type
of data it is being asked to handle. Now look at the new statement. A pointer (pExprFloat, of type
LELInterface<Float>) to an object of class LELLattice is created (LELLattice is a class derived from
LELInterface, the abstract base class).

Thus, from the expressions b or c, we can create LatticeExprNode objects from the Lattice objects
associated with b and c. We must now look at the full expression, b+c. Remember that Lattice b is of
type Float and Lattice c is of type Double, and the output Lattice a is of type Float (and therefore
copyData is expecting a Lattice<Float> for its argument).

LatticeExprNode has an operator 4+ function declared as

friend LatticeExprNode operator+ (const LatticeExprNode& left,
const LatticeExprNode& right);

The friend keyword makes it a globally accessible operator. Now, you can see that it takes two other
LatticeExprNode objects, in our case, those that we made from b and c.

The + operator returns another LatticeExprNode object; it is defined as

LatticeExprNode operator+ (const LatticeExprNode& left,
const LatticeExprNode& right)
{
return LatticeExprNode::newNumBinary (LELBinaryEnums::ADD, left, right);

where the static function LatticeExprNode: :newNumBinary has returned the desired LatticeExprNode
object (which embodies the two subexpression, b and c).

Now, recall that what we really want in the copyData call is an object of type LatticeExpr (which is
a Lattice). Currently we have a LatticeExprNode object. So there has to be an automatic conversion
from the non-templated LatticeExprNode object to the templated LatticeExpr object. This is done
with one of the operators in LatticeExprNode from the list

operator LatticeExpr<Float>();
operator LatticeExpr<Double>();
operator LatticeExpr<Complex>();
operator LatticeExpr<DComplex>() ;
operator LatticeExpr<Bool>();

For reasons that we don’t understand, this could not be made to work yet with a constructor of the type
LatticeExpr (const LatticeExprNode& expr)
These operators are are in reality casting operators. For example, if you had

Double x;
Int i;
x = (Double)i;

the i would be cast to a Double. Similarly,

LatticeExprNode node;
LatticeExpr<Float> expr;
expr = (LatticeExpr<Float>)node;

converts the node to the expr.

Since they are in class LatticeExprNode, they expect to operate on a LatticeExprNode object. The
name of the operator is the same as the return type: LatticeExpr<T> This is in general a dangerous
practice, as one gets automatic conversions that weren’t wanted sometimes. But we seem to have no
choice for now.

Now, for our example, the type that Lattice: :copyData is expecting is a Float, because that is the
type of the Lattice a. Therefore, the casting operator that will be invoked is

LatticeExprNode: :operator LatticeExpr<Float>()

{
return LatticeExpr<Float> (LatticeExprNode(makeFloat()), 0);

So a LatticeExpr constructor of the form

LatticeExpr (const LatticeExprNode& expr, ulnt iDummy)

is explicitly invoked by this casting operator. First however, the makeFloat function is invoked explicitly
to convert the data in the LatticeExprNode object to the correct internal type, which is Float for our
example. Actually, the return type from makeFloat is a CountedPtr<LELInterface<Float>>. Therefore,
to convert that to a LatticeExprNode, the constructor

LatticeExprNode (LELInterface<Float>* expr);

is automatically invoked. This is given to the LatticeExpr constructor and finally returned.

Now returning to the newNumBinary static function above, there is another subtlety being handled. Here
is where we handle some additional type conversion. We know that Lattice a wants a Float Lattice
in the Lattice: :copyData function. We saw above that the newNumBinary static function produced a
LatticeExprNode which was automatically converted to a LatticeExpr object of type Float. The thing
we didn’t see yet was how the handling of the mixed type expression b+c was dealt with by newNumBinary.
That is, we don’t know yet what the type of b+c was, although we know that makeFloat was able to
handle it, whatever it was. So let us look inside newNumBinary.

This function is implemented as

LatticeExprNode LatticeExprNode::newNumBinary (LELBinaryEnums::Operation oper,
const LatticeExprNode& left,
const LatticeExprNode& right)

DataType dtype = resultDataType (left.dataType(), right.dataType());
switch (dtype) {
case TpFloat:
return new LELBinary<Float> (oper, left.makeFloat(),
right.makeFloat());
case TpDouble:
retiirn new I.FIRinarv<Double> (oper left makeDouble()

right.makeDouble());
case TpComplex:
return new LELBinary<Complex> (oper, left.makeComplex(),
right.makeComplex());
case TpDComplex:
return new LELBinary<DComplex> (oper, left.makeDComplex(),
right.makeDComplex());
default:
throw (AipsError
("LatticeExpr: Bool argument used in numerical binary operation"));
}

return LatticeExprNode();

This function returns an expression of one type, as the two expressions that go into it may have dif-
ferent types. Indeed, in our case, the left expression is a Float and the right a Double. The function
LatticeExprNode: :resultDataType says that mixing these two types should result in a Double so as
not to lose precision. Therefore, the left and right expressions are converted to a Double expression and
the LELBinary object that is created is a Double (see also the section on type conversions).

In addition, it can be seen that the return statements are returning pointers to objects of type LELBinary,
which is derived from LELInterface. Yet, the function newNumBinary actually returns an object of type
LatticeExprNode. So what is happening is an implicit conversion via a constructor. It’s one of the
private constructors

LatticeExprNode (LELInterface<Float>* expr);
LatticeExprNode (LELInterface<Double>* expr);
LatticeExprNode (LELInterface<Complex>* expr);
LatticeExprNode (LELInterface<DComplex>* expr) ;
LatticeExprNode (LELInterface<Bool>* expr);

that is doing the work.

3.2 Evaluation

How does copyData manage to extract the result of the expression evaluation ? The copyData func-
tion ultimately calls the Lattice function getSlice (via an iterator) to fish out the data from its
Lattice argument. getSlice is therefore implemented in LatticeExpr (as it inherits from Lattice
where getSlice is declared). We have seen that LatticeExpr has one private data member, and it is of
type LatticeExprNode. The implementation of LatticeExpr: :getSlice is to call the eval function of
its LatticeExprNode private data member (recall that LatticeExprNode has a variety of pointers like
CountedPtr<LELInterface<Float>> for each data type). LatticeExprNode has many self-similar eval
functions, one for each type (Float, Double etc). Although the LatticeExprNode object does know for
what type it was constructed, it actually chooses the correct version of the eval function by the argument
signature. This works because a buffer is included in the eval interface (this is where the result of the
expression is put), and the buffer is of the appropriate type.

So invoking eval of LatticeExprNode invokes eval of the object (which has been derived from LELInterface)
and is pointed to by the appropriately typed CountedPtr<LELInterface<T>>. In our example involving
adding two Lattices together, those derived classes would be LELLattice (to read the data from the
Lattice) and LELBinary (to add the data). For LELLattice, its eval function actually then uses the
getSlice function on the actual Lattice from which it was constructed (b or c) to fish out the data. The
LELBinary eval function will add the numbers together.

Finally, since copyData is actually iterating through the LatticeExpr (Lattice) object in optimally
sized chunks. The Lattice expression is evaluated chunk by chunk (usually tile by tile). This means
that there are no large temporary Lattices stored.

virtual void eval (Array<T>& result,
const PixelRegion& region) const = 0;

The derived classes make the actual implementation. The result of the evaluation of the expression is
put in the result array. If the result of the expression evaluation is known to be a scalar (figured out at
tree construction time) then the getScalar function is used to get the value instead.

virtual T getScalar() const = 0;

Let’s look at eval implementations for LELBinary and LELLattice. First, the piece for LELBinary
relevant to the + operator.

template <class T>
void LELBinary<T>::eval (Array<T>& result,
const PixelRegion& region) const
{
switch(op_p) {
case LELBinaryEnums::ADD :
if (pLeftExpr_p->isScalar()) {
pRightExpr_p->eval(result, region);
result += pLeftExpr_p->getScalar();
} else if (pRightExpr_p->isScalar()) {
pLeftExpr_p->eval(result, region);
result += pRightExpr_p->getScalar();
} else {
Array<T> temp(result.shape());
pLeftExpr_p->eval(result, region);
pRightExpr_p->eval (temp, region);
result += temp;
}

break;

Three cases are handled here: (array,array), (scalar,array) and (array,scalar). The case of (scalar,scalar)
is handled similarly in LELBinary: :getScalar.

The important thing to see here is that the process is recursive. Each of the left and right expressions
are evaluated first, before the + operation is done. So for example, since our example is the (array,array)
case, we have

Array<T> temp(result.shape());
pLeftExpr_p->eval(result, region);
pRightExpr_p->eval(temp, region);
result += temp;

Both the left and right expressions are LELLattice objects. Evaluating them results in filling the result
array with the values from the Lattice in the region. Then the two arrays (result and temp) are
added to make the binary operation result. The LELLattice eval function looks like

template <class T>
void LELLattice<T>::eval(Array<T>& result,
const PixelRegion& region) const
{
// The rwRef function will make a copy when needed (i.e. when ptr
// contains a reference to the original data).

COWPtr<Array<T> > ptr;
pLattice_p->getSlice(ptr, region.box(), False);
result.reference(ptr.rwRef());

the Lattice function getSlice is used to recover the pixels into the array result. Note we use a COWPtr
so that for say an ArrayLattice, the array references the data only saving a copy, unless it is actually
written to. There is no LELLattice: :getScalar function as it doesn’t make any sense. If you try to call
it, you will throw an exception.

4 Data Type Conversions

There are two types of conversion going on in these classes, and one can get rather confused between
them if not careful.

e There are conversions imposed by the C++ compiler. These convert from Lattice<T> to LatticeExprNode
and from LatticeExprNode to LatticeExpr<T>

e There are conversions done by the expression classes to convert from one data type to another (e.g.
Float to Double). They are run-time conversions generated by the makeXXX functions.

The first type of conversion (e.g. LatticeExprNode to LatticeExpr<T>) is handled by the casting
operator discussed previously. In addition, inside that casting operation are calls to functions like
LatticeExprNode: :makeFloat which embed an object of class LELConvert into the tree and then at
evaluation time LELConvert: :eval actually converts the data (i.e. the values of the pixels in the eval
interface buffer array) between types so that the LatticeExpr<T> T type is self-consistent with the type
of the LELInterface CountedPtr inside LatticeExprNode (and hence the right-type eval functions get
picked up in LatticeExprNode).

Let us look a little harder at the conversion functions like LatticeExprNode: :makeDouble (and simi-
lar expressions) that does the type conversion for the actual data arrays in the LELInterface::eval
interface. Here is the implementation

CountedPtr<LELInterface<Double> > LatticeExprNode: :makeDouble() const
{
switch (dataType()) {
case TpFloat:
return new LELConvert<Double,Float> (pExprFloat_p);
case TpDouble:
return pExprDouble_p;
default:
throw (AipsError ("LatticeExpr: conversion to Double not possible"));
}

return O;

So what happens is that if a type conversion is required on the LatticeExprNode to which makeDouble

is being applied, then the returned CountedPtr<LELInterface<Double>> is assigned to a LELConvert ob-

ject (which inherits from LELInterface). Otherwise, it just returns the current CountedPtr<LELInterface<Double>>
object already active inside the LatticeExprNode (pExprDoubley). The LELConvert object is now em-

bedded in the tree. Note that the actual conversion will happen at evaluation time, not at tree construc-

tion time, when the eval function of LELConvert gets called. LELConvert: :eval will actually convert

the data in the interface buffer between types (just by copying).

Let us look at the actual tree here. Imagine we have

Lattice<Float> a;
Lattice<Double> b;
LatticeExprNode expr = atb;

The tree, with all like types, would be

Now however, because a and b are different types, we embed a conversion into the tree. In this case, the
Float is converted to a Double.

conv b

Now let us assign this result of a+b to an output Lattice

Lattice<Float> c;
c.copyData(expr) ;

The type of a+b is Double, and we need to convert it to Float, the type of c. Thus the tree looks like

conv

conv b

In summary, type conversions of the actual data are handled by embedding LELConvert objects in the
tree where necessary. The embedding is done by the LatticeExprNode: :makeXXX functions.

5 Scalar Results

So far, we have assumed that the result of all expressions is of the same shape. For example, adding
two Lattices together where the Lattices have the same shape. However, we need to also handle
expressions where the resultant of the operation on a Lattice is a scalar. For example, min(a) where
the minimum value of the Lattice a is returned, must also be handled.

This is done in two places. Firstly, when any of the derived LEL* classes are constructed, it is known

arhothor +ho vaci1ld AF +ha Aarvvoratrinnt FAavr vvrhich +hat ~lace aviata 10 a aralar Aar et EFar ovarnnle +hoe ~laco

LELUnaryConst, which exists to handle an expression like 2.0 knows that its result, after evaluation, is
a scalar. Similarly, class LELFunction1D, when it is handling functions min, max, mean and sum (which
take one argument) knows that it returns a scalar. Otherwise, and for all other classes, it is seen whether
the result of evaluating the tree below is a scalar or not. If the former, then the result is also a scalar.
Storage of the knowledge about whether the result is a scalar or not is handled by the attribute class,
LELAttribute.

Secondly, the knowledge that the result of the evaluation of the tree below the current location is scalar
or not is used to optimize the computation (we could just replicate scalars into arrays of course).

For example, consider the expression b+min(c) where b and c are Lattices. The result of min(c) is a
scalar (we will discuss the optimization of only evaluating this once later). Evaluating b+min(c) means
that scalar is added to each element of b so the final result is not a scalar.

The tree looks like

b min

The code handling the binary operator + needs to know whether the result of the left and right expressions
are scalars or not. For example, if they were both scalars, it would just add those scalars together and
pass them on up the tree (noting at tree construction time that its result was scalar). This operation is
handled in the LELBinary class, and the relevant code for the + operation is

template <class T>
void LELBinary<T>::eval (Array<T>& result,
const PixelRegion& region) const

switch(op_p) {
case LELBinaryEnums::ADD :
if (pLeftExpr_p->isScalar()) {
pRightExpr_p->eval(result, region);
result += pLeftExpr_p->getScalar();
} else if (pRightExpr_p->isScalar()) {
pLeftExpr_p->eval(result, region);
result += pRightExpr_p->getScalar();
} else {
Array<T> temp(result.shape());
pLeftExpr_p->eval(result, region);
pRightExpr_p->eval(temp, region);
result += temp;
}

break;

Here you can see that it checks the left and right arguments to see if they are scalar and acts optimally
accordingly, using the getScalar function (rather than the eval function) to return the scalar result.
But notice that the case of both right and left being scalar is missing. What happens is that the eval
function is only called by the next object up the tree if the result of that current operation is NOT
scalar. If the result is a scalar, then eval is not called, but getScalar is called. For LELBinary the piece
relevant to operator + looks like

template <class T>

T T T'TDY . P . 2 Y " — N

switch(op_p) {
case LELBinaryEnums::ADD :
return pLeftExpr_p->getScalar() + pRightExpr_p->getScalar();

So if we had asked for 2.0 + min(c) then both the arguments would be scalars; the tree would be

2.0 min

and LELBinary: :getScalar would have been called to evaluate the sum rather than LELBinary: :eval.
Now if this expression was being used like

a.copyData(2+min(c));

then the Lattice a will have all of its pixels assigned the same scalar value that resulted from the
expression evaluation. This final assignment decision is handled in the LatticeExprNode eval functions.

6 Optimizations
In the previous section, we considered an expression like
a.copyData(b+min(c));

where the result of min(c) is a scalar. The Lattice expressions classes, normally evaluate their expres-
sions chunk by chunk (tile by tile). However, it is clear that an expression like min(c) should only be
evaluated once, and thereafter, for every chunk of the output Lattice, a, that pre-evaluated scalar result
used.

Let us look at one of the eval function calls in LatticeExprNode. Recall that this is the function that the
Lattice: :copyData is eventually going to end up invoking and there is one for each data type depending
upon the type of the output Lattice. Let us look at the Float version.

void LatticeExprNode::eval (Array<Float>& result,
const PixelRegion& region) const
{
DebugAssert (dataType() == TpFloat, AipsError);
if (!'donePrepare_p) {

// If first time, try to do optimization.

LatticeExprNode* This = (LatticeExprNode*)this;
LELInterface<Float>: :replaceScalarExpr (This->pExprFloat_p);
This->donePrepare_p = True;

}

if (isScalar()) {
result = pExprFloat_p->getScalar();

} else {
Array<Float> temp(result.shape());

IR = T = & D . Y T e N

result = temp;

The only optimization we do at present is to replace expressions that result in a scalar by a scalar
expression (LELUnaryConst).

So, the first time this function is entered, the optimization is attempted. Thereafter, the expression is just
evaluated. Note that the caste is necessary to convert the const LatticeExprNode object to a non-const
one so we can change it (yuck) !

The implementation of the static function LELInterface: :replaceScalarExpr is

template<class T>
void LELInterface<T>::replaceScalarExpr (CountedPtr<LELInterface<T> >& expr)
{
expr->prepare () ;
if (expr->isScalar()) {
expr = new LELUnaryConst<T> (expr->getScalar());
}

So it takes a CountedPtr<LELInterface> and then does two things. First, the prepare function is
called. Second, if the result of the input expression is a scalar, it evaluates the value of the scalar with
the getScalar function and replaces the expression by a LELUnaryConst object of that scalar value and
appropriate type.

Each of the LEL* classes derived from LELInterface has a prepare function. These either do nothing, or
call replaceScalarExpr. Thus the process is recursive.

Let us consider a couple of simple examples. One that does no optimzation and one that does.

Consider the expression
LatticeExprNode myExpr = a+b;

where a and b are Float Lattices. The tree is

After construction of the tree, the LatticeExprNode object myExpr has one active LELInterface pointer,
pExprFloat,, which points at the LELBinary object constructed to handle the + operation. The
LELBinaryObject has two internal LELInterface pointers, one for each of the left and right expres-
sions (call them pLeft_p and pRight_p). These pointers each point at a LELLattice object, one for each
Lattice. The LELLattice objects maintain pointers to the actual Lattice objects. This is summarized
in the following table.

Object Contains a Points at a Expressions
LELInterface<Float> *
myExpr pExprFloat_p LELBinary<Float> | a+b
pExprFloat_p | pLeft_p LELLattice<Float> | a
pRight_p LELLattice<Float> | b

Here is the sequence of events. The numbers indicate the layer of the tree that we have penetrated to. 1
is the top of the tree.

1. InLatticeExprNode: :eval, replaceScalarExpr (myExpr.pExprFloat_p) is called. replaceScalarExpr
renames the pointer passed to it in the argument list expr. This points at the LELBinary object

. In LELInterface: :replaceScalarExpr, the LELBinary object calls prepare with expr->prepare()
. In LELBinary: :prepare, replaceScalarExpr (pLeft_p) is called.

2

3

4. In LELInterface: :replaceScalarExpr, the LELLattice object calls prepare with expr->prepare ()
5. In LELLattice: :prepare; this does nothing and we return to LELInterface: :replaceScalarExpr
4

. In LELInterface: :replaceScalarExpr, the result of evaluating the LELLattice expression is seen
to not be a scalar and we return to LELBinary: :prepare

3. In LELBinary: :prepare, replaceScalarExpr (pRight_p) is called.
4. In LELInterface: :replaceScalarExpr, the LELLattice object calls prepare with expr->prepare().
5. In LELLattice: :prepare; this does nothing and we return to LELInterface: :replaceScalarExpr

4. In LELInterface: :replaceScalarExpr, the result of evaluating the LELLattice expression is seen to
not be a scalar and we return to LELBinary: : prepare

3. In LELBinary: :prepare, we return to LELInterface: :replaceScalarExpr

2. In LELInterface: :replaceScalarExpr, the result of evaluating the LELBinary expression is seen to
not be a scalar and we return to LatticeExprNode: :eval

1. In LatticeExprNode: :eval we note that we have done the optimization and now evaluate the ex-
pression a+b.

The net result of all this was that nothing happened. This was because there were no scalar expressions
to optimize.

Now let’s consider an expression where the optimization will occur. Consider the expression
LatticeExprNode myExpr = a+min(b);

where a and b are Float Lattices. The tree is
a min

The min function returns a scalar - the minimum of the Lattice b which should be added to the pixels
of Lattice a. We should be able to optimize it out of the iteration loop and replace the tree by

a constant

After construction of the tree, the LatticeExprNode object myExpr has one active LELInterface pointer,
pExprFloat_p, which points at the LELBinary object constructed to handle the + operation. The
LELBinaryObject has two internal LELInterface pointers, one for each of the left and right expres-
sions (call them pLeft p and pRight p). pLeft_p points at a LELLattice object, for Lattice a.
pRight_p points at a LELFunctionl1D object to handle the min function. This LELFunctioniD object
has a LELInterface pointer called pExpr_p which points at a LELLattice object, for Lattice b. This

L B T T A b Y e T

Object Contains a Points at a Expressions
LELInterface<Float> *
myExpr pExprFloat_p LELBinary<Float> a-+min(b)
pExprFloat_p | pLeft_p LELLattice<Float> a
pRight_p LELFunctionlD<Float> | min(b)
pRight_p pExpr_p LELLattice<Float> b

Here is the sequence of events. The numbers indicate the layer of the tree that we have penetrated to. 1
is the top of the tree.

1. In LatticeExprNode: :eval, replaceScalarExpr (myExpr.pExprFloat p) is called. replaceScalarExpr
calls the pointer passed to it in the argument list "expr” This points at the LELBinary object

2. In LELInterface: :replaceScalarExpr, the LELBinary object calls prepare with expr->prepare()

3. In LELBinary: :prepare, replaceScalarExpr (pLeft p) is called. pLeft_p points at a LELLattice
object

4. In LELInterface: :replaceScalarExpr, the LELLattice object calls prepare with expr->prepare().
5. In LELLattice: :prepare; this does nothing and we return to LELInterface: :replaceScalarExpr

4. In LELInterface: :replaceScalarExpr, the result of evaluating the LELLattice expression is seen
to not be a scalar and we return to LELBinary: :prepare

3. In LELBinary: : prepare, replaceScalarExpr (pRight_p) is called; pRight_p points to a LELFunction1D
object this time.

4. In LELInterface: :replaceScalarExpr, the LELFunction1D object calls prepare with expr->prepare ().
5. In LELFunctioniD: :prepare, replaceScalarExpr (pExpr_p) is called

6. In LELInterface: :replaceScalarExpr, the LELLattice object calls prepare with expr->prepare().

7. In LELLattice: :prepare; this does nothing and we return to LELInterface: :replaceScalarExpr

6. In LELInterface: :replaceScalarExpr, the result of evaluating the LELLattice expression is seen
to not be a scalar and we return to LELFunctionlD: :prepare

5. In LELFunctionlD: :prepare, we return to LELInterface: :replaceScalarExpr

4. In LELInterface::replaceScalarExpr, the result of evaluating the LELFunctionlD expression IS
seen to be a scalar. We evaluate that scalar value (another recursive chain) with the getScalar function
via the call expr->getScalar (). We replace the object pointed at by expr (in this case, expr is pointing
at a LELFunctioni1D object) by a LELUnaryConst object constructed with the result of the getScalar
call

We return to LELBinary: :prepare
3. From LELBinary: :prepare, we return to LELInterface: :replaceScalarExpr.

2. In LELInterface: :replaceScalarExpr, the result of evaluating the LELBinary expression is seen to
not be a scalar and we return to LatticeExprNode: :eval

1. In LatticeExprNode: :eval we note that we have done the optimization and now evaluate the ex-
pression atconstant

Note that the call to getScalar by the LELFunctionlD object invokes a recursive chain as well, although
it doesn’t go far in this case. Let’s look inside the LELFunctionlD: :getScalar function and see what
happens there. The relevant piece is implemented according to

template <class T>

T OTTT T 1 AT\ ™M 2 Y _ T N\ o

switch(function_p) {
case LELFunctionEnums: :MIN1D :
{
if (pExpr_p->isScalar()) {
return pExpr_p->getScalar();
}
Bool firstTime = True;
T minVal = T(Q);
LatticeExpr<T> latExpr(pExpr_p, 0);
RO_LatticeIterator<T> iter(latExpr, latExpr.niceCursorShape());
while (! iter.atEnd()) {
T minv = min(iter.cursor());
if (firstTime || minv < minVal) {
firstTime = False;
minVal = minv;
}
iter++;
}

return minVal;

The LELInterface pointer pExpr_p, is pointing at a LELLattice object, which was constructed from
the actual Lattice, b. First it looks to see whether the expression in hand, the LELLattice expression,
is a scalar or not. If it is, it finds the value and returns. For example, if we had asked for min(2.0)
this would happen. If it isn’t, then we continue on. Now again, pExpr_p is pointing at a LELLattice
object (derived from LELInterface). But that is not a Lattice; we need to get at the Lattice from
which it was constructed. Since we are inside class LELFunctionlD, we can’t get at the pointer inside
the LELLattice class which does point at the Lattice. Thus, instead, we construct a LatticeExpr<T>
object (which does inherit from Lattice) from the LELLattice.

This happens with the constructor
LatticeExprNode (LELInterface<Float>* expr);

which makes a LatticeExprNode. From there it is converted to a LatticeExpr via the casting operators
described in section 2.1 Then it is a simple matter to create a Lattice iterator, iterate through the
Lattice (via the LatticeExpr) and work out the minimum value.

7 Relational and Logical Expressions

7.1 Relational Expressions

So far in the discussion, it has been assumed that the result of all expressions was either a numeric array
or scalar. However, we also want to be able to handle operations which result in Booleans. For example,
consider Lattices

Lattice<Float> a;
Lattice<Float> b;
Lattice<Bool> c;

Y L. . e

c.copyData(a>b);

so the Bool Lattice c is True or False depending upon whether the data values of a were greater than
those of b or not.

What has to be handled here is that the output of the > operation is Boolean, whereas the type of the
data which went into the operation was Float.

This relational operator, and like ones (<, >=, <=, ==, |=) are handled in the class LELBinaryCmp. It
is templated on class T but inherits from LELInterface<Bool> rather than LELInterface<T>.

The LELInterface class eval function is declared as

// Evaluate the expression and fill the result array
virtual void eval (Array<T>& result,
const PixelRegion& region) const = 0;

This indicates that the array, result, which results from evaluating the expression is of type T. Since
LELBinaryCmp inherits from LELInterface<Bool>, the type of its evaluation array, result, is Bool. This
is just what we want. The result of b>c is a Bool array.

The LELBinaryCmp class itself is still templated in class T because that is the type of the Lattices that
go into it.

7.2 Logical Expressions
Take as an example,

Lattice<Bool> a;
Lattice<Bool> b;
Lattice<Bool> c;
c.copyData(a&&b) ;

so the Bool Lattice c is True if Lattice a and b are True. This kind of operator can only be de-
fined for Boolean Lattices. Therefore the class LELBinaryBool is not templated and inherits from
LELInterface<Bool>. If the data types of the Lattices are not Bool it will throw an exception.

Similarly, the class LELUnaryBool exists to handle unary logical operations such as

c.copyData('a)

8 Other Specializations

There are a few other specialized classes because not all possible data types can be handled by some
functions. For example, LELFunctionReallD is a specialized version of LELFunction1D. The former exists
to handle functions such as asin, acos etc which only function with real data.

Similarly, the classes LELFunction{Float,Double,Complex,DComplex} exist to handle functions with
an arbitrary number of arguments for each data type. Probably some of these could be combined into a
templated class in the same way as the 1-argument LELFunction#*1D classes, but there is enough difference
between them to make this worthwhile.

Deserving of special mention for their cunning implementation are the functions, nelements, ntrue, and
nfalse. These are implemented in LELFunctionDouble, which is not templated and it inherits from

T T T T 3 £ TN 1T~

8.1 Function nelements

Consider the expression

Lattice<Bool> b;
Lattice<Double> a;
a.copyData(nelements(b));

Function nelements operates on a Lattice of any data type, and returns the number of elements in the
Lattice in a Double. LELFunctionDouble is not templated, and yet this function handles Lattices of
any type. It is implemented directly in LatticeExprNode

LatticeExprNode nelements(const LatticeExprNode& expr)
{
Block<LatticeExprNode> arg(l, expr);
return new LELFunctionDouble (LELFunctionEnums::NELEM, arg);

The new statement creates a pointer to a LELFunctionDouble object, which inherits from LELInterface<Double>.
This is then automatically converted to a LatticeExprNode by the constructor

LatticeExprNode (LELInterface<Double>* expr) ;

Now, LELFunctionDouble knows that the result of function nelements is a scalar, so it is only imple-
mented in getScalar. The implementation in LELFunctionDouble: :getScalar is

case LELFunctionEnums::NELEM :
if (arg_pl0].isScalar()) {
return 1;
}
return arg_pl[0].shape().product();

arg p[0] is the first element in a Block<LatticeExprNode>. In our example, it is a LatticeExprNode
housing the LELLattice object that is needed to access the LatticejBool;, (b). Now recall that LELLattice
is fully templated, so it can of course handle any type of Lattice. But LELFunctionDouble doesn’t know
anything at all about the type of this Lattice in the path that is followed for this function; all type checking
is bypassed. The statement arg p[0] .shape() .product() invokes the appropriate LatticeExprNode
function to return the shape attribute.

8.2 Functions ntrue and nfalse

These functions only work on Bool Lattices and count up the number of True or False values. Like
nelements they are implemented directly from LatticeExprNode. E.g.

LatticeExprNode ntrue (const LatticeExprNode& expr)

{
AlwaysAssert (expr.dataType() == TpBool, AipsError);
Block<LatticeExprNode> arg(l, expr);
return new LELFunctionDouble(LELFunctionEnums::NTRUE, arg);

Immediately though a test is made for the type of the expression that is having the function applied to
it. If it’s not a Bool, an exception is thrown. Otherwise we proceed into LELFunctionDouble again.
Since the result is a scalar they are only implemented in LELFunctionDouble: :getScalar For example,

for ntrue

switch (function_p) {

case LELFunctionEnums: :NTRUE :

RO_Latticelterator<Bool> iter(latExpr, latExpr.niceCursorShape());

const Array<Bool>& array = iter.cursor();

= array.getStorage (deletelt);

{
ulnt ntrue = 0;
Bool deletelt;
LatticeExpr<Bool> latExpr(arg_p[0], 0);
while (! iter.atEnd()) {
const Bool* data
ulnt n = array.nelements();
for (uInt i=0; i<n; i++) {
if (datalil) {
ntrue++;
}
}
array.freeStorage (data, deletelt);
iter++;
}
return ntrue;
}

A LatticeExpr<Bool> (which is a Lattice) is explicitly created from the LatticeExprNode via the
constructor. This is then iterated through to get implement the function.

9 Static LatticeExprNode functions

The following table lists helper functions in LatticeExprNode and their uses for creating appropriate

nodes in the tree.

LatticeExprNode Reason
function
newNumUnary Create a new node for a numerical unary operation.
The result has the same data type as the input
newNumBinary Create a new node for a numerical binary operator.
The result has the same data type as the combined input type.
newBinaryCmp Create a new node for a comparison binary operator.
The result has the same data type as the combined input type.
newNumFunclD Create a new node for a numerical function with 1 argument.
The result has the same data type as the input.
newRealFunclD Create a new node for a real numerical function with 1
argument. The result has the same data type as the input.
newComplexFunclD | Create a new node for a complex numerical function with 1
argument. The result has the same data type as the input.
newNumReallD Create a new node for a real numerical function with 1
argument. The resultant type is non-complex
newNumFunc2D Create a new node for a numerical function with 2 arguments.
The result has the same data tvpe as the combined input tvpe.

10 Memory Management

Although there are many new statements in these classes, there are no matching delete statements. This
is because all the pointers are CountedPtr objects and that class handles the cleanup of released memory.

11

Functionality

In this section we list the full functionality available in the LEL classes.

The next small table lists the data type codes used subsequently.

Type
Float 1
Double 2
Complex 3
4
5

DComplex
Bool

First we give a descriptive table of the available classes and the generic input Lattice expression types
and output types that they handle.

Class Description Type that Operates on | Retus
LELLattice Reads Lattice pixels 1,2,3,4,5 1,23,
LELUnary Handles numerical unary operators 1,2,3,4 1,2,3,
LELUnaryConst Handles scalar constants 1,2,3,4,5 1,2,3,
LELUnaryBool Handles logical unary operators 5)
LELBinary Handles numerical binary operators 1,234 1,2,3,
LELBinaryCmp Handles relational binary numerical operators 1,2,34 5
LELBinaryBool Handles logical binary operators 5)
LELFunction1D Handles numerical 1-argument functions 1,2,3,4 1,2,3,
LELFunctionND Handles numerical N-argument functions 1,2,3,4 1,2,3,
LELFunctionReal1D Handles real numerical 1-argument functions 1,2 1,2
LELFunctionFloat Handles numerical N-argument functions returning Float 1,3 1
LELFunctionDouble Handles numerical N-argument functions returning Double | 2,4 2
LELFunctionComplex Handles complex numerical N-argument functions 3 3
LELFunctionDComplex | Handles double complex numerical N-argument functions 4 4
LELFunctionBool Handles logical N-argument functions 5 5

Note that some classes are essentially non-templated specializations of others. For example, LELFunctionReallD
handles functions that couldn’t be in LELFunction1D because there was no complex version of that func-
tion (e.g. asin) so templating would fail.

In the usage column of the last table, the examples use the following objects:

Lattice<Float> a;
Lattice<Float> b;

Lattice<Double> aDouble;
Lattice<Double> bDouble;
Lattice<Complex> aComplex;
Lattice<Complex> bComplex;

T add+a ~~NNNMArm 1 AN ~aNMNMAr-T Axr o

Lattice<DComplex> bDComplex;
Lattice<Bool> aBool;
Lattice<Bool> bBool;

Double const;
LatticeExprNode expr;

Class Operation | Input Data Type | Result dim. | Arguments | Usage example
LELLattice getSlice 1,2,3,4,5 Array 1 expr = a
LELUnary - 1,234 Scalar,Array | 1 expr = —a

+ 1,2,3,4 Scalar,Array | 1 expr = +a (does nothing)
LELUnaryConst constant 1,23,4,5 Scalar 1 expr = const
LELUnaryBool ! 5 Scalar,Array | 1 expr = laBool
LELBinary + 1,2,3,4 Scalar,Array | 2 expr = a+b

- 1,2,3,4 Scalar,Array | 2 expr = a—b

* 1,2,34 Scalar,Array | 2 expr = a*b

/ 1,2,3,4 Scalar,Array | 2 expr = a/b
LELBinaryCmp == 1,2,3,4 Scalar,Array | 2 expr = a==

= 1,2,3.4 Scalar,Array | 2 expr = al=b

> 1,2,3,4 Scalar,Array | 2 expr = a>b

< 1,2,3,4 Scalar,Array | 2 expr = a= 1,2,3,4 Scalar,Array | 2 expr = a>=b

>= 1,234 Scalar,Array | 2 expr = a<=b
LELBinaryBool == 5 Scalar,Array | 2 expr = aBool==DbBool

I= 5) Scalar,Array | 2 expr = aBool!l=bBool

&& 5 Scalar,Array | 2 expr = Bool&&bBool

I 5 Scalar,Array | 2 expr = Bool||bBool
LELFunction1D sin 1,2,3,4 Scalar,Array | 1 expr = sin(a)

sinh 1,2,34 Scalar,Array | 1 expr = sinh(a)

cos 1,2,3,4 Scalar,Array | 1 expr = cos(a)

cosh 1,2,34 Scalar,Array | 1 expr = cosh(a)

exp 1,2,3,4 Scalar,Array | 1 expr = exp(a)

log 1,2,3,4 Scalar,Array | 1 expr = log(a)

log10 1,2,3,4 Scalar,Array | 1 expr = logl0(a)

sqrt 1,2,3,4 Scalar,Array | 1 expr = sqrt(a)

min 1,2,3,4 Scalar 1 expr = min(a)

max 1,2,3,4 Scalar 1 expr = max(a)

mean 1,2,34 Scalar 1 expr = meann(a)

sum 1,2,3,4 Scalar 1 expr = sum(a)
LELFunctionND iif 1,2,34 Scalar,Array | 1 expr = iif(aBool,a,b)
LELFunctionReallD | asin 1,2 Scalar,Array | 1 expr = asin(a)

acos 1,2 Scalar,Array | 1 expr = acos(a)

tan 1,2 Scalar,Array | 1 expr = tan(a)

atan 1,2 Scalar,Array | 1 expr = atan(a)

tanh 1,2 Scalar,Array | 1 expr = tanh(a)

ceil 1,2 Scalar,Array | 1 expr = ceil(a)

floor 1,2 Scalar,Array | 1 expr = floor(a)
LELFunctionFloat min 1 Scalar,Array | 2 expr = min(a,b)

max 1 Scalar,Array | 2 expr = max(a,b)

pow 1 Scalar,Array | 2 expr = pow(a,b)

atan2 1 Scalar,Array | 2 expr = atan2(a,b)

fmod 1 Scalar,Array | 2 expr = fmod(a,b)

abs 1,3 Scalar,Array | 1 expr = abs(a), abs(aComplex)

arg 3 Scalar,Array | 1 expr = arg(aComplex)

real 1,3 Scalar,Array | 1 expr = real(aComplex)

imag 1,3 Scalar,Array | 1 expr = imag(aComplex)

Class Operation | Input Data Type | Result dim. | Arguments | Usage example
LELFunctionDouble min 2 Scalar,Array | 2 expr = min(aDouble,bDouble)

max 2 Scalar,Array | 2 expr = max(aDouble,bDouble)

pow 2 Scalar,Array | 2 expr = pow(aDouble,bDouble)

atan2 2 Scalar,Array | 2 expr = atan2(aDouble,bDouble

fmod 2 Scalar,Array | 2 expr = fmod(aDouble,bDouble)

abs 24 Scalar,Array | 1 expr = abs(aDouble), abs(aDC

arg 4 Scalar,Array | 1 expr = arg(aDComplex)

real 2,4 Scalar,Array | 1 expr = real(aDComplex)

imag 2.4 Scalar,Array | 1 expr = imag(aDComplex)
LELFunctionDouble ntrue 5 Scalar 1 expr = ntrue(aBool)

nfalse 5 Scalar 1 expr = nfalse(aBool)
LELFunctionDouble nelements | Any Scalar 1 expr = nelements(a)
LELFunctionComplex pow 3 Scalar,Array | 2 expr = pow(aComplex,bCompl

conj 3 Scalar,Array | 1 expr = conj(aComplex)
LELFunctionDComplex | pow 4 Scalar,Array | 2 expr = pow(aDComplex,bDCor

conj 4 Scalar,Array | 1 expr = conj(aComplex)
LELFunctionBool all 5 Scalar 1 expr = all(aBool)

any 5 Scalar 1 expr = any(aBool)
LatticeExprNode amp 1,2,3,4 Scalar,Array | 2 expr = amp(a,b)
LatticeExprNode pa 1,2 Scalar,Array | 2 expr = pa(a,b)

	Introduction
	Class Structures
	How It Works
	Tree Creation
	Evaluation

	Data Type Conversions
	Scalar Results
	Optimizations
	Relational and Logical Expressions
	Relational Expressions
	Logical Expressions

	Other Specializations
	Function nelements
	Functions ntrue and nfalse

	Static LatticeExprNode functions
	Memory Management
	Functionality

