
NOTE 224 – AIPS++ Least Squares background

Wim Brouw

22 January 1999

Contents

1 Introduction 1

2 Linear equations 3
2.1 Real . 3

2.1.1 Errors . 4
2.2 Complex . 6

2.2.1 Separable complex . 6
2.2.2 Errors . 8

3 Dependant linear equations 8
3.1 Unknown constraints . 9

3.1.1 Errors . 10
3.2 Known constraints . 11

3.2.1 Errors . 11

4 Non-linear equations 11
4.1 Errors . 12

5 Summary 12

1 Introduction

Trying to find a more stable non-linear least squares method (LSQ) than
the one currently used in Newstar, I found another few areas that could be
added or improved in the existing routines. In the end I produced a set of
routines to handle linear and non-linear cases, both with or without SVD,
and constraint equations.

1

In addition the present document describes the usage and background
of the different routines.

Least squares solutions in Aips++ have the following general back-
ground:

1. all are based on creating normal equations from an, initially unknown,
number of condition equations

2. the actual LSQ-object is a symmetric (or Hermitian) matrix

3. matrix inversions are done using in-place Cholesky methods where
possible: it is for standard use the fastest, least memory consuming
and a stable method. In cases where the inverse matrix is needed,
the method uses resources of the same order as full LU-decomposition
(only if explicit constraint equations are present)

4. input/output to the LSQ-object is done in any precision, internally all
calculations are done in double precision

5. complex numbers are assumed to be contiguous pairs of real numbers
with the real part being the first

The following terminology is used throughout:

n number of unknowns to be solved

m number of simultaneous knowns

N number of condition equations

χ2 merit function

z∗ complex conjugate of z

z< real part of z

z= imaginary part of z

x column vector of unknowns x0, . . . , xn−1

ai vector of factors a0,i, . . . , an−1,i in condition equation i
(i = 0, . . . , N − 1)

C the N × n array of condition equations

A n× n array: normal equations matrix

L n column vector: right-hand side normal equations

yi model value for condition equation i (i = 0, . . . , N − 1)

li measured value for condition equation i (i = 0, . . . , N − 1)

σi standard deviation for condition equation i (i = 0, . . . , N − 1)

wi weight for condition equation i (wi = 1/σ2i)

2

[ab] shorthand for
∑N−1

i=0 wiaibi

The condition equations can, with the above definitions, be written in
one of the following ways:

ai · x = li i = 0, . . . , N − 1 (1)

or as:

n−1∑
k=0

aikxk = li i = 0, . . . , N − 1 (2)

or as:

C · x = l (3)

The normal matrix is defined as:

A = CT ·Q−1 ·C (4)

resulting in the normal equations:

A · x = L (5)

where L = CT ·Q−1 · l and Q is the covariance matrix of the observations.
Here only covariance matrices with the same value in each column i (the
‘weight’ wi) are considered.

2 Linear equations

2.1 Real

The merit function we want to minimise is:

χ2 =
N−1∑
i=0

[
li − yi
σi

]2
(6)

For the minimum of χ2 holds:

∂χ2

∂xk
= 0 k = 0, . . . , n− 1 (7)

which leads to the following set of normal equations:

3

N−1∑
i=0

[li − yi]
σ2i

∂yi
∂xk

= 0 k = 0, . . . , n− 1 (8)

or in matrix form:


[a0a0] [a0a1] · · · [a0an−1]
[a1a0] [a1a1] · · · [a1an−1]

...
...

. . .
...

[an−1a0] [an−1a1] · · · [an−1an−1]

 · x =


[a0l]
[a1l]

...
[an−1l]

 (9)

or:

A · x = L (10)

This symmetric set of equations can be solved, if the matrix is positive
definite, i.e. if there are no dependencies between the columns. The solution
is given by:

x = A−1 · L (11)

2.1.1 Errors

After solution for the unknowns x, χ2 as defined in (6) can be directly
calculated if we rewrite it as:

χ2 = [ll]− 2
n−1∑
k=0

[akl]xk +
N−1∑
i=0

wiy
2
i (12)

Noting that yi =
∑n−1

k=0 akxk and using equation (9) to note that [ail] =∑n−1
k=0 [aiak]xk, we can rewrite (12) as:

χ2 = [ll]−
n−1∑
k=0

xk[akl] (13)

The χ2 could be used to assess the goodness of fit if the actual σi’s were
known, and the errors are normal distributed. In general the actual values
of σi are not known, and often the distribution is not normal (.e.g. if we
solve for logarithmic values). An estimate of the standard deviation can be
made by:

σ2 =

[
(li − yi)2

]
N − n

(14)

4

which can be estimated by:

σ2o =
χ2

N − n
(15)

to give ‘an error per observation’. The ‘error per unit weight’, or the stan-
dard deviation, can be expressed as:

σ2w =
χ2

[1]

N

N − n
(16)

The uncertainty in the solution xi can be expressed as:

σ2 (xi) =
N−1∑
k=1

σ2k

(
∂xi
∂yk

)2

(17)

Since

xi =
n−1∑
k=0

(
A−1

)
ik

[akl] (18)

we have:
∂xi
∂yk

=
n−1∑
j=0

(
A−1

)
ij

akj
σ2k

(19)

leading to:

σ2 (xi) =
n−1∑
k=0

n−1∑
l=0

(
A−1

)
ik

(
A−1

)
il

N−1∑
j=0

akjalj
σ2j

 (20)

Doing the sums, this equation reduces to:

σ2 (xi) =
(
A−1

)
ii

(21)

If the σi was not known originally, the estimate of the standard uncertainties
in the unknowns x are:

σ (xi) = σo

√
(A−1)ii (22)

If the uncertainties in the unknowns are wanted, the inverse matrix A−1

is calculated by backsubstitution of the identity matrix, and the uncertain-
ties by (22).

5

2.2 Complex

The merit function we want to minimise in this case is:

χ2 =
N−1∑
i=0

[
li − yi
σi

][
li − yi
σi

]∗
(23)

Differentiating χ2 leads to the following set of normal equations:


[a∗0a0] [a∗0a1] · · · [a∗0an−1]
[a∗1a0] [a∗1a1] · · · [a∗1an−1]

...
...

. . .
...[

a∗n−1a0
] [

a∗n−1a1
]
· · ·

[
a∗n−1an−1

]

 · x =


[a∗0l]
[a∗1l]

...[
a∗n−1l

]

 (24)

The normal matrix is Hermitian. It can be solved by Choleski methods.
However, internally the matrix is converted to a real form. Although this has
an, in general, small memory penalty, it has no influence on CPU time, and
makes it possible to use the same routines for complex and real solutions.
The conversion to real is done by splitting each element Aij of the normal
matrix into A<ij + ıA=ij and replacing it by:

Aij =

(
Aij< −Aij=
Aij= Aij<

)
(25)

and simular replacements for the vector elements xi and Li as:

xi =

(
xi<
xi=

)
(26)

and:

Li =

(
Li<
Li=

)
(27)

Another reason for solving real rather than complex equations is given
in the next section.

2.2.1 Separable complex

In cases where both the unknowns x and their complex conjugates x∗ appear
in the condition equations, differentiating the merit function (23) will not
produce a symmetric or Hermitian normal matrix, since there exists no
linear relation between xi and x∗i . We could, of course, solve for 2n complex

6

equations with added constraints that the sum of even and odd unknowns
must be real, and their difference imaginary, but this will lead to 4n complex
equations.

If, however, we consider each complex unknown as two real unknowns
(i.e. xi< and xi=) then differentiating (23) produces the following symmetric
set of 2n real equations:

[a0
∗a0]< [a1

∗a0]= [a2
∗a0]< · · · [a2n−1

∗a0]=
−[a0

∗a1]= [a1
∗a1]< −[a2

∗a1]= · · · [a2n−1
∗a1]<

...
...

...
. . .

...
−[a0

∗a2n−1]= [a1
∗a2n−1]< −[a2

∗a2n−1]= · · · [a2n−1
∗a2n−1]<

 ·

·


x0<
x0=
x1<

...
xn−1=

 =


[a0
∗l]<

[a1
∗l]=

[a2
∗l]<
...

[a2n−1
∗l]=

 (28)

A number of special cases can be distinguished.
In the ‘normal’ complex case (previous section), a2i ≡ a2i+1, and (28)

reduces to (25).
If all a2i and a2i+1 are real, but specified, e.g., as a complex number,

(28) deteriorates into:
[a0<a0<] 0 [a0<a1<] · · · 0

0 [a0=a0=] 0 · · · [a0=an−1=]
[a1<a0<] 0 [a1<a1<] · · · 0

...
...

...
. . .

...
0 [an−1=a0=] 0 · · · [an−1=an−1=]

 ·

·


x0<
x0=
x1<

...
xn−1=

 =


[a0<l<]
[a0=l=]
[a1<l<]

...
[an−1=l=]

 (29)

Note that in this case there is a true separation of the real and imaginary
parts of the different unknowns, and two separate real solutions with each
n unknowns will produce exactly the same result.

The full and special cases are all catered for in the aips++ routines.

7

2.2.2 Errors

Using arguments comparable to those in (2.1.1), we can get (13) for the
complex case as:

χ2 = [ll∗]−
n−1∑
k=0

(
xk<[a∗2kl]< + xk=

[
a∗2k+1l

]
=

)
(30)

with the a’s and x’s as defined in (29).

3 Dependant linear equations

If there are not enough independent condition equations, the normal matrix
A cannot be inverted, and a call to WNMLTN will fail with a .false. return
value.

The equations could still be solved if some additional ‘constraint’ equa-
tions would be introduced. In the more complex cases the precise, let alone
the best, form for these additional equations is difficult to determine (e.g.
the redundancy situation in Westerbork).

A method known as ‘Singular value decomposition’ (SVD) can be used
to obtain the minimal set of orthogonal equations that have to be added to
solve the LSQ problem. Several implementations exist in the literature.

In general we can distinguish three types of constrained equations:

• the minimum number of sufficient constraint equations are known to
be able to solve a system of equations

• constraints are used to add additional information (e.g. the sum of
angles of a triangle)

• no actual constraint equations are known

All three cases are handled in the LSQ package, the first two in the same
way.

The general constraint situation arises from the use of Lagrange multipli-
cators. Assume that in addition to the condition equations, with measured
values, we have a set of p rigorous equations:

φi(x) = 0 i = 0, . . . , p− 1 (31)

We must therefore make χ2 minimal, subject to the set of (31), or:

n−1∑
i=0

∂χ2

∂xi
dxi = 0 (32)

8

subject to the conditions:

n−1∑
i=0

∂φk
∂xi

dxi = 0 k = 0, . . . , p− 1 (33)

which leads to a set of n+ p equations:

∂χ2

∂xi
+

p−1∑
k=0

λk
∂φk
∂xi

= 0 i = 0, . . . , n− 1 (34)

together with the (31).
Note that I have chosen for having constraint equations linear in the

unknowns, with a zero value. In cases where this is not adequate (e.g.
x + y + z = 360) a simple linear transformation will suffice to make it e.g.
x′ + y′ + z′ = 0.

Defining the second term in (34) as Bik, we can write our expanded set
of normal equations as:(

A B
BT 0

)(
x
λ

)
=

(
L
0

)
(35)

3.1 Unknown constraints

The routines to handle this situation use a method based on “Pseudo-inverse
berekening en Cholesky factorisatie”, Hans van der Marel, 27 maart 1990,
Faculty of Geodesy, Delft University. I will briefly describe Hans’ paper,
together with the additions I have made.

In the case we are considering, the normal equation A has not full column
rank. Therefore, there exists, if the rank defect is p, an n × p matrix G, a
basis for the null-space of A, with AG = 0. If we assume that B has just
sufficient constraint equations to solve the rank defect, the inverse of the
matrix in (35) is:

(
A B
BT 0

)−1
=

 A# G
(
BTG

)−1(
GTB

)−1
GT 0

 (36)

with A# the pseudo-inverse of A. A number of relations hold for A#, the
most important for us that BTA# = 0 and A#B = 0, or B is a base for the
null-space of A#. For a mininorm solution we can choose B = G. In that
case A# is the Moore-Penrose inverse, and BTG is regular and symmetric.

We can now proceed in the following way:

9

1. Do a Cholesky factorisation of the normal equations A until the re-
maining columns of A are dependent. Pivoting along the diagonal of
A occurs to make sure that A can be partitioned in an independent
and a dependent part with rank defect n2. Dependency is determined
by looking at the angle between a column and the space formed by
the already determined independent space (the so-called ‘collinearity
number’).

If n1 = n− n2, we can say that after n1 Choleski steps, we have:

A =

(
A11 A12

A21 A22

)
=

(
UT
11 0

UT
12 I

)
·
(
U11 U12

0 A22

)
(37)

with U11 the Cholesky factor of A11, U12 = UT
11
−1
A12 and A22 =

A22 − UT
12U12.

The collinearity angle δ can be determined for the current column i
by: sin2 δ = u2ii/aii.

2. Determine a G1 replacing the (rectangular) U12 from U11G1 = −U12.

3. Determine a (symmetric) G2 replacing A22 from the rank basis I +
GT

1G1 = (GT
2 − 1)(G2 − 1)

4. determine constraint equations G = (G1G2, G2)
T .

5. Solve for the n1 independent unknowns x1 using A11 and L1 by back
substitution

6. Solve constraint equations for the remaining n2 unknowns, using G2

by back substitution: x2 = −G−12 GT
1 x1

7. Make Baarda’s S-transform of independent n1 unknowns: x1 = x1 +
G1x2.

Setting F = A−11 L1, D = −G−12 GT
1 and E =

(
In1 +G1D

D

)
, we can write

the above steps as:(
x1

x2

)
=

(
In1 +G1D

D

)(
A−11 L1

)
= E · F (38)

3.1.1 Errors

Errors are determined in the same way as described in (2.1.1), where it
should be noted that (13) can either be used summing over n1 variables and
using the first guess of x1, or over n and using the final x. Internally the

10

first option is used. The uncertainties in x are determined by calculating the
covariance matrix. Using similar arithmetic as in (2.1.1), it can be shown
that:

A−1 = E · a−11 ·E
T (39)

A−1 is calculated by first solving H = E
(
A−11 · In1

)
and then A−1 = E·HT .

3.2 Known constraints

In the case of known constraints, hence when B is known in (35), this equa-
tion can be solved. Cholesky decomposition does not work in this case, and
a, transparent, Crout LU decomposition is done to determine the (symmet-
ric) covariance (i.e. inverse) matrix of the left hand side of (35). .

3.2.1 Errors

Errors are determined as explained in (2.1.1). Since all constraint equations
are ≡ 0, the sum in (13) is taken over n, not over n+ p if p are the number
of constraint equations.

4 Non-linear equations

In the case of non-linear condition equations, no simple solution to minimise
the merit function (e.g. (6)) exists. A simple solution is to take the condition
equation, make a first order Taylor expansion around an estimated x̂; solve
for dx, and iterate till solution found.

However, better and more stable methods exist (e.g. steepest-descend)
for some circumstances. A method that seems to be quite stable and using
both steepest-descent and Taylor expansion, is the method by Levenberg-
Marquardt (see e.g. “Numerical recipes”, W.H. Press et al., Cambridge
University Press).

If we have an estimate for x, we can find a better one by:

x̂next = x̂ + H−1 ·
[
−∇χ2(x̂)

]
(40)

where H is the Hessian matrix of χ2. If our approximation is not good
enough, we could use the steepest-descent by calculating:

x̂next = x̂− constant ·
[
−∇χ2(x̂)

]
(41)

11

The Hessian matrix H has as elements:

Hij =
∂2χ2

∂xi∂xj
= 2

N−1∑
k=0

1

σ2i

[
∂yk
∂xi

∂yk
∂xj
− (li − yi)

∂2yi
∂xi∂xj

]
(42)

By dropping the second term in (42), and multiplying each Hii term with
(1 + λ), and defining the first derivative of χ2 as b, we can combine the
equations (40), (41) into:

H · dx = b (43)

which can be solved as standard normal equations.
Choosing λ is the crux of the matter, and where to stop iterating. A

start value of λ = 0.001 is used in the following routines. The method looks
at the χ2 for x̂ + dx. If it has increased over the value of χ2 for x̂, x̂ is
unchanged, and λ = 10λ. If there is a decrease; a new value for x̂ is used,
and λ = λ/10. Iteration can be stopped if the fractional decrease in χ2 is
small (say < 0.001); never if there is an increase in χ2.

4.1 Errors

Errors are calculated as described in (2.1.1). The errors returned by WN-
MLSN are, of course, only approximations, since the original equations are
non-linear, but give a good impression of the residuals. The covariance ma-
trix should be calculated by doing a final linear run on the residuals, and
solve the equations.

5 Summary

An LSQ-object takes a total space of:

9 + (administration)

(n+ p)(n+ p+ 1)/2 + (normal array)

4m + (error calculations)

m(m+ p) + (known sides)

(n+ p+ 1)/2 + (pivot area)

(n+ p) (solution) 8 byte words (44)

where n is the number of unknowns (2n if complex); m the number of
simultaneously to be solved equations; p the number of external constraint
equations. In the non-linear case two LSQ-objects are used. In cases where

12

the inverted normal array is calculated (known constraints) a temporary
storage of n2 8-byte words is used.

The following calls are available:

1. To be given

wnb, July 30, 2015

13

	Introduction
	Linear equations
	Real
	Errors

	Complex
	Separable complex
	Errors

	Dependant linear equations
	Unknown constraints
	Errors

	Known constraints
	Errors

	Non-linear equations
	Errors

	Summary

