
NOTE 233 – Guide to Measures in C++

Wim Brouw

20 May 2000

Contents

1 Introduction 3

2 Background 3

3 Conversion 5

4 Efficiency 6
4.1 Measure or MeasValue . 6
4.2 Re-use the effort of frame . 7
4.3 Re-use of conversion objects 8
4.4 Specialized conversion engines 8

4.4.1 EarthMagneticMachine 8
4.4.2 VelocityMachine . 9
4.4.3 UVWMachine . 11

4.5 Specifying execution details 12

5 Interface 13
5.1 Getting values from a Measure 13
5.2 Getting values from a MeasValue 14
5.3 Obtaining information from the MeasFrame 14

A Appendix 16
A.1 Background literature . 16
A.2 Details for individual Measures 16

A.2.1 MEpoch . 17
A.2.2 MPosition . 17
A.2.3 MDirection . 18
A.2.4 MBaseline . 20

1

A.2.5 Muvw . 20
A.2.6 MEarthMagnetic . 21
A.2.7 MFrequency . 22
A.2.8 MRadialVelocity . 23
A.2.9 MDoppler . 24

2

1 Introduction

This guide gives a short overview of the background and use of the Measures
module in C++. Detailed information can be found in the

Measures module description, and in the individual header files of the
classes in this module.

Section 2 explains what a Measure consists of, and why; section 3 dis-
cusses conversion; section 4 some notes on efficient use and section 5 gives
the common interface of Measures and their values. Appendices give some
details per Measure.

2 Background

Currently the following measures exist:

Epoch a high precision epoch, a moment in time

Position a 3-dimensional position vector, in general indicating a position
w.r.t. Earth

Direction a direction in space (i.e. a position of unit length)

Frequency the frequency of an electro-magnetic wave

Doppler the redshift of an object

RadialV elocity velocity along a direction

EarthMagneticF ield the earth magnetic field vector

Baseline a direction with a length

uvw a u, v, w coordinate: a baseline projected on some plane

A specific Measure class is indicated with an M , e.g. a direction measure
is an MDirection.

A Measure consists of a value and a reference. The value of a
Measure is a vector of double floating point numbers, in some internal for-
mat, independent of the units used to create them. The value is called
a MeasValue, and specific ones are indicated with the letters MV , e.g.
MVDirection 1. Appendix A gives the various internal values.

1Note the unfortunate circumstance that the classes MV Time and MVAngle, which
are not MeasValues, but only formatting classes for times and angles, were named as such.

3

../html/group__Measures__module.html

A value can be constructed in many different ways. An MVDirection
can, e.g. be constructed from 2 angles or from 3 direction cosines; an
MV Frequency from a wavelength or the wave energy.

Some Measures can often also be obtained from a catalog, especially a
list of observatories, a source list and a spectral line list. They can be ob-
tained as:

MDirection source;

MFrequency line;

MPosition obs;

if (MeasTable::Observatory(obs, "ATCA")) {};

if (MeasTable::Line(line, "HI")) {};

if (MeasTable::Source(source, "0008-421")) {};

The reference consists of up to 3 fields:

• a reference code, describing how the value should be interpreted. This
field is mandatory, and has an enumerated value (see Appendix A for
the possible codes). Examples are:

– MDirection::J2000

– MDirection::AZEL

– MEpoch::TAI

– MEarthMagnetic::DEFAULT

In some cases the code has all the available information to be able to
interpret the value (like the MDirection::J2000). In other cases the
information is not sufficient. An example is the MDirection::AZEL. If
you have measured some AZEL values, and are only interested in say
a pointing model for the telescope, the MDirection::AZEL is sufficient
information. However, if you want to convert the measured AZEL into
a J2000 right ascension and declination, it is necessary to know where
your telescope is, and what the epoch of the observation is. This can
be specified in

• a frame. The frame is a MeasFrame class object, and can contain
Measures describing the epoch, the position on Earth, the direction in
which you are observing (for Doppler calculations), the rest frequency
of a spectral line and a table describing the detailed orbit of a non-
standard solar system object (like a comet). The frame can be filled
with the MeasFrame constructor, or with MeasFrame set() methods.

4

• an optional offset. In some cases it can be advantageous to specify
an offset. An example could be 0h on a specific date, with the actual
Epoch only specifying the time since that point in time. Note that
offsets are not very useful for Directions, since directions are always
vectors of unit lengths. However, special offset methods exist for
directions.

A reference is created as a specialized MeasRef object, using the
Measure::Ref alias (e.g. MDirection::Ref). A full reference could be:

// A time in MJD

MEpoch epoch(Quantity("50500.5d"), MEpoch::UTC);

MPosition obs;

MeasTable::Observatory(obs, "WSRT");

MeasFrame frame(obs, epoch);

MDirection::Ref ref(MDirection::VENUS, frame);

3 Conversion

Measures can be converted from one reference into another refer-
ence. E.g. from an MDirection::J2000 direction coordinate into
an MDirection::AZEL coordinate; or from an MEpoch::UTC into an
MEpoch::TAI. Conversion objects are MeasConvert objects, using the
Measure::Convert alias (e.g. MDirection::Convert. The conversion ob-
ject needs at least a from reference and a to reference.

Example:

MDirection::Convert(MDirection::Ref(MDirection::VENUS,

frame),

MDirection::Ref(MDirection::J2000));

Note that if a frame is necessary, it suffices to give it with either one
of the two references. Unless, of course, they are different for the two
references, like converting the AZEL at one telescope to that at another.
The latter case (i.e. two different reference frames for the input and output
values), is handled by always converting first the input value to the default
for the class (e.g. J2000 for directions), and then convert this value to the
appropriate output type and frame.

The from reference can also be specified as a complete Measure. In
that case that value of the Measure will act as the default value to be
converted.

5

Constructing a conversion object will set up a series of conversions that
have to be done to get from the from to the to reference. This state-
machine like approach is to be able to use less than the required odd 400
conversion routines for say 20 different allowable reference codes.

The conversion object is executed with the () operator. The actual
conversion done depends on the argument of the operator:

• none: use the default value of the Measure specified in the constructor
(or using a set() method).

• MeasValue: convert it to a Measure using the from reference of the
object

• Measure: re-initialize the conversion object, and do the conversion
with the new default value (since the reference has changed!), taking
the full Measure into account (including, of course, a possible reference
frame).

If the conversion needs information, it will cache anything it calculates,
either in the conversion object (like calculated Nutation), or in the frame
(like e.g. the sidereal time of a frame MEpoch specified in UTC). This
information will be re-used if possible and feasible in subsequent conversions
with the same conversion object or using the same frame.

It is also worth noting that frames are handled internally by reference
rather than by value (e.g. when copied) (the same is true for Measure::Ref
objects). One consequence is that a conversion knows about any change you
make to a frame, and will use it. So, if by a frame.set(MEpoch) the time
of a frame is changed, a subsequent conversion which had that frame given
as the frame to be used, will automatically use the new time.

4 Efficiency

The efficiency of the use of the Measures and related classes can vary greatly.
By using the appropriate interface, by fine-tuning with the aid of aipsrc
variables, and by making sure the caching system is used optimally, there
can be a large reduction in resource use.

4.1 Measure or MeasValue

It is not always necessary to use a full-fledged Measure. It often suffices to
use a MeasValue (or maybe even a Quantity or just a simple Double.

As an example, consider a frequency container object:

6

• if you have some box that produces a value that is always in GHz,
and that has to be passed-on as-is without any further information, a
Double is sufficient

• if the value you have has to be converted to some other frequency
unit (like MHz or so) before being used, use a Quantity. The only
knowledge necessary is the units

• if you would like the value be represented in other ways to represent
an electro-magnetic wave (like wavelength, time, energy, impulse, an-
gle/time, time), use an MVFrequency, which knows that the value has
the properties of an electro-magnetic wave (in addition to the units)

• if you would like to know what the frequency really represent (a spec-
tral rest frequency; a frequency as observed in a telescope; a frequency
as would be observed from the local standard of rest; . . .), and if
you are going to use that information in one way or another (display,
conversion, archive, . . .) use an MFrequency as value container

As a rule of thumb the above could be summarised as:

• designing a user interface: be flexible, use a Measure

• designing a hardware interface: use a Double or Int

• in internal classes, often use MeasValue, but will depend on how close
you are to user interface or another internal interface

Similar arguments can be used for the other Measures.

4.2 Re-use the effort of frame

From the point of view of the programmer, a frame is just a container of
Measures to indicate when, where, in what direction and at what frequency
a certain Measure was made or referred to. However, in actual fact it is
also an engine and cache for a lot of calculations. Imagine that you want to
convert from right-ascension and declination to hour-angle and declination,
and that you have provided an epoch in UTC in the frame. The actual
conversion object will request (probably among other things), the sidereal
time from the frame. The first request will set up a conversion object within
the frame (from UTC to LAST) and cache it for later use. After that it will
use this conversion object to obtain the sidereal time, and cache the result
(for maybe a subsequent call). The conversion needs nutation, polar motion

7

and a few other calculations. Again, all of these are cached for subsequent
use in other calls to the frame for information.

Efficient use of Measures is only possible if the lifetime of a frame is
as long as possible. Which suggests that in many cases a frame should be
created at the highest level possible (maybe even globally). Re-use of a
frame, e.g. for a different time, is made possible by the set() methods, e.g.
set(MEpoch), which will try to minimize the re-calculations necessary. The
fact that frames are always used internally by reference (see earlier), which
also means that any change made to a frame will automatically be used by
any subsequent conversion which knows about this frame, makes in principle
for an efficient machinery for many different purposes. However, it could also
easily lead to misunderstandings. If you plan to do any special conversions,
the detailed information provided in the various Measure classes should be
perused.

4.3 Re-use of conversion objects

Similar to the frame discussed in the previous section, a conversion object
(e.g. MDirection::Convert) is a repository of the necessary state-machine
to make the conversion possible, and any intermediate calculation results.
To make efficient use of this information, the same conversion object should
be used if more than one conversion of the same type has to be done.

4.4 Specialized conversion engines

Although the official MeasConvert objects are very versatile, using them can
be quite a job. For that reason a set of specialized “Conversion engines”
have been put together for easy use. The three engines available at the
moment are described in the following paragraphs. They have all a basic
format:

• a constructor is used to create an engine object. The object knows
(either through constructor, or through the use of set() methods)
about the conversions to be done

• the () operator is used to convert a value the appropriate way.

4.4.1 EarthMagneticMachine

The EarthMagneticMachine calculates the Earth’ magnetic field in a certain
direction at a certain height above the Earth’ surface.

The machine object’s constructor needs in principle:

8

• a direction reference code to be able to interpret input direction values

• height above the Earth’ surface

• position (of observation point) on Earth

• epoch of observation (the IGRF model used is time dependent)

The () operator will produce the line-of-sight component of the magnetic
field (see the header files for details). Other methods exist to get the com-
plete magnetic field; the longitude of the point specified and the position on
Earth of the point. The following example calculates the magnetic field at
200km height at the Compact Array:

// Define a time/position frame

MEpoch epo(MVEpoch(MVTime(98,5,16,0.5).day()));

MPosition pos;

MeasTable::Observatory(pos, "ATCA");

MeasFrame frame(epo, pos);

// Note that the time in the frame can be changed later

// Set up a machine

EarthMagneticMachine exec(MDirection::B1950,

Quantity(200, "km"), frame);

// Given a current observational direction

MDirection indir(Quantity(3.25745692, "rad"),

Quantity(0.040643336,"rad"),

MDirection::Ref(MDirection::B1950));

// The field in this direction is calculated

exec.calculate(indir.getValue());

// Show some data

cout << "Parallel field: " << exec.getLOSField() <<

" nT" << endl;

cout << "Sub-ionosphere long: " << exec.getLong("deg") <<

endl;

4.4.2 VelocityMachine

The velocity machine converts between frequencies and velocities (or vice
versa). This machine has been developed to aid in the, especially for
the beginning user of Measures, intricate way RadialVelocity, Doppler and
Frequency are connected. The machine converts between Doppler and
Frequency values.

The constructor of the machine needs:

9

• a frequency reference (e.g. MFrequency::LSR), including a possible
offset and frame

• preferred frequency units (e.g. cm or GHz)

• velocity reference (e.g. MDoppler::OPTICAL), including a possible off-
set

• preferred velocity units (e.g. AU/a)

• the rest frequency used for the conversion, given as an MVFrequency

The () operator has an MVFrequency, an MVDoppler or a Quantity as
argument. Depending on if it is a velocity or a frequency, the argument is
converted to the other representation. makeFrequency and makeVelocity

exist to create a vector of velocities or frequencies from a vector of Doubles.
An example:

// Define a time/position frame

MEpoch epo(MVEpoch(MVTime(98,5,16,0.5).day()));

MPosition pos;

MeasTable::Observatory(pos, "ATCA");

MeasFrame frame(epo, pos);

//

// Note that the time in the frame can be changed later

// Specify the frequency reference

MFrequency::Ref fr(MFrequency::LSR);

//

// Specify the velocity reference

MDoppler::Ref vr(MDoppler::OPT);

//

// Specify the default units

Unit fu("eV");

Unit vu("AU/a");

//

// Get the rest frequency

MVFrequency rfrq(QC::HI);

//

// Set up a machine (no conversion of reference frame)

VelocityMachine exec(fr, fu, rfrq, vr, vu, frame);

//

// or as (with conversion of reference frame it

10

// could have been)

// VelocityMachine exec(fr, fu, rfrq, MFrequency::TOPO,

// vr, vu, frame);

// Given a current observational frequency of

// 5.87432837e-06 eV

// its velocity will be (in AU/yr)

cout << "Velocity: " <<

exec.makeVelocity(5.87432837e-06) << endl;

//

// Introducing an offset

MFrequency foff(MVFrequency(Quantity(5.87432837e-06,

"eV")), MFrequency::LSR);

//

// and setting it in the reference, and regenerating

// machine:

fr.set(foff);

exec.set(fr);

//

// the following will give the same result:

cout << "Velocity: " << exec.makeVelocity(0.0)

<< endl;

4.4.3 UVWMachine

The UVWMachine can convert UVW -coordinates between coordinate sys-
tems. In addition it can provide the phase rotation necessary on the data to
have a new fringe-stopping center. A simple conversion of UVW coordinates
will be executed if only the coordinate reference frame is changed (e.g. from
a J2000 to a Galactic or an AzEl coordinate system). If also the actual
position on the sky is changed, the phase rotation necessary on the data is
provided as well. Fringe stopping centers can be centered on other bodies
as well (e.g. a planet). Read the caveats in the detailed help file.

The constructor of the machine needs the following input:

• an input MDirection specifying the original fringe stopping center’s
position and reference frame

• an output reference code to indicate the output reference frame of
the UVW coordinates; or an output MDirection indicating both the
new fringe stopping center and its reference position.

The output of the machine can be one or all of the following:

11

• a rotation matrix that can be used to transpose the UVW -coordinates

• a vector that can be used to produce the necessary phase rotation

• actual conversion of a set of input UVW points

• actual vector of phase rotations for a set of UVW points

Example:

// Given a current phase stopping Center

MDirection indir(Quantity(3.25745692, "rad"),

Quantity(0.040643336,"rad"),

MDirection::Ref(MDirection::B1950));

// Conversion to J2000 is set by:

UVWMachine uvm(MDirection::Ref(MDirection::J2000), indir);

// The rotation matrix to go to new UVW is obtained by:

RotMatrix rm(uvm.rotationUVM());

// If an UVW specified:

MVPosition uvw(-739.048461, -1939.10604, 1168.62562);

// This can be converted by e.g.:

uvw *= rm;

// Or, alternatively, by e.g.:

uvm.convertUVW(uvw);

4.5 Specifying execution details

The precision of a Measure conversion can be influenced by the use of aipsrc
variables. Changing the precision will influence the efficiency of the Measures
conversion.

Parameters that can be used are, a.o., the length of periods over which
computations can be re-used; if it is necessary to use IERS tables for precise
calculation of time and polar motion, or that the simple model suffices.

A few examples:

12

Name Description Default

measures.nutation.d interval interval in days over which lin-
ear interpolation of nutation
calculation is appropriate

0.04d

measures.nutation.b useiers use the IERS Earth orienta-
tion parameters tables to cal-
culate nutation

false

measures.nutation.b usejpl use the JPL DE database
(use measures.jpl.ephemeris to
specify which one) to calculate
nutation

false

measures.measiers.b notable do not use the IERSeop97 or
IERSpredict tables at all for
calculations

false

5 Interface

The interface to the different Measures have a large set of identical methods.
Only when values are clearly related to a specific Measure (like e.g. a lati-
tude) does the method to obtain not exist for e.g. a frequency. Constructors
of Measures have often specializations (like one with a longitude and lati-
tude for a direction), but they all have also standard ones. The standard
ones are described in the

Measures.h

5.1 Getting values from a Measure

The various value that are contained in the Measure object can be obtained
by the following calls:

getV alue() will obtain the MeasValue (i.e. the MVName object) from the
Measure

getData() will obtain a pointer to the MeasValue

getRef() will obtain the Measure::Ref reference object

getRefPtr() will obtain a pointer to the Measure::Ref object

get() defined for some to get the data in special form (with specifiable units

getAngle() defined for some to get the data in angle (with specifiable units)

13

../html/classcasa_1_1Measure.html

General calls are available to obtain the information contained in the
Measure::Ref object:

getType() will obtain the reference code from the Measure::Ref object

getFrame() will obtain the frame from the Measure::Ref object

offset() will return the pointer to the offset (or 0 if no offset specified)

set() methods are available to fill in the fields in the Measure::Ref

object.

5.2 Getting values from a MeasValue

Each MeasValue has methods to obtain the internal data in a standard way.
Some have additional ones available when appropriate (like getLong()):

getV ector() will always return the internal value as a Vector<Double>

getV alue will obtain the internal value as a Double or as a Vector<Double>,
depending on the dimension of the internal value. The units of the
value returned will be the internally used ones (e.g. m for a position,
s for a time.

get() will obtain the internal value as a Quantity or as a Vector<Double>.
If a quantity, the default units are the interanls one, but the output
units can be selected as well.

5.3 Obtaining information from the MeasFrame

The frame can be used as an automatic converter. An example could be the
automatic conversion to a sidereal time from a civil time (like UTC). All
conversions that are used internally by the various conversion engines are
available. Of course, the epoch should have been put into the frame for it
to be converted; and in this case also the position should have been put into
it. Available information from the frame:

14

// Get the epoch pointer (0 if not present)

const Measure *const epoch() const;

// Get the position pointer (0 if not present)

const Measure *const position() const;

// Get the direction pointer (0 if not present)

const Measure *const direction() const;

// Get the radial velocity pointer (0 if not present)

const Measure *const radialVelocity() const;

// Get the comet pointer (0 if not present)

const MeasComet *const comet() const;

// Get data from frame.

// Only available if appropriate measures are set,

// and the frame is in a calculating state.

// <group>

// Get TDB in days

Bool getTDB(Double &tdb);

// Get the longitude (in rad)

Bool getLong(Double &tdb);

// Get the latitude (in rad)

Bool getLat(Double &tdb);

// Get the position

Bool getITRF(MVPosition &tdb);

// Get the geocentric position (in m)

Bool getRadius(Double &tdb);

// Get the LAST (in days)

Bool getLAST(Double &tdb);

// Get the LAST (in rad)

Bool getLASTr(Double &tdb);

// Get J2000 coordinates (direction cosines)

Bool getJ2000(MVDirection &tdb);

// Get B1950 coordinates (direction cosines)

Bool getB1950(MVDirection &tdb);

// Get apparent coordinates (direction cosines)

Bool getApp(MVDirection &tdb);

// Get LSR radial velocity (m/s)

Bool getLSR(Double &tdb);

// Get the comet table reference type

Bool getCometType(uInt &tdb);

// Get the comet coordinates

Bool getComet(MVPosition &tdb);

// </group>

In the above reference is made to the calculating state of the frame. This
state is set when the frame has been actively used by a Measure::Convert

engine (i.e. have at least one operator() executed); or if you do it explicitly

15

with: MCFrame::make(frame);.

A Appendix

A.1 Background literature

More information on the different astronomical conventions and data can be
found in:

Time, Coordinates

• Explanatory Supplement to the Astronomical Almanac, P.K. Seidelman
et al., University Science Books, 1992

• The Astronomical Almanac for the year yyyy, London: The Stationary
Office; Washington: U.S. Government Printing Office

• the “International Celestial Reference System” (ICRS)

Positions

• the IERS website

Frequency, Doppler, Velocity

• any astronomical textbook

Magnetic field

• the IAGA website

Baseline, uvw

• any textbook on radio astronomy

A.2 Details for individual Measures

In the following some comments are made per Measure type. A list is given
of the known reference codes, and the frame information necessary to convert
from/to each code is indicated.

16

http://hpiers.obspm.fr/webiers/general/syframes/icrsf/ICRS.html
http://hpiers.obspm.fr/
http://www.ngdc.noaa.gov/IAGA/wg8/

A.2.1 MEpoch

An epoch in time. Internally maintained as an absolute time as a Modified
Julian Day (or a Greenwich Sidereal Date) in two Double numbers. For-
matting of an MEpoch (or any time expressed in time or angle units) can be
done with the MVTime class.

MEpoch

Code Description Frame info

LAST Local Apparent Sidereal Time MPosition

LMST Local Mean Sidereal Time MPosition

GMST1 Greenwich Mean ST1

GAST Greenwich Apparent ST

UT1

UT2

UTC

TAI

TDT

TCG

TDB

TCB

IAT = TAI

GMST = GMST1 MPosition

TT = TDT

UT = UT1

ET = TT

DEFAULT = UTC

A special code modifier MEpoch::RAZE exist. Its result is that after a
conversion to a code with the RAZE bit set, the result will be truncated to
integer days. Useful to find a sidereal time offset for a specific UTC date.

A.2.2 MPosition

A 3-dimensional vector, especially a position on (or rather w.r.t. Earth).
Internally represented as a Vector<Double> with assumed units of m, inde-
pendent of the constructing units. Normally given as a longitude, latitude
and height (geodetic), or as a vector with origin in center of Earth.

The internal value of the MPosition class (i.e. MVPosition) is also the
base class for the contents of the other 3-dimensional position and direction

17

classes:

• MVDirection

• MVEarthMagnetic

• MVBaseline

• MVuvw

MPosition

Code Description Frame info

ITRF International Terrestrial Reference
Frame

WGS84 World Geodetic System

DEFAULT = ITRF

A.2.3 MDirection

A 3-dimensional vector of unit length, indicating a direction, especially a
direction in space (note that for the Solar system bodies the distance to the
bodies is inherently known).

The solar system bodies’ directions are virtual directions. They have
no value until explicitly converted to a real coordinate system like J2000,
AZEL, . . .

18

MDirection

Code Description Frame info

J2000 mean equator, equinox J2000.0
JMEAN mean equator, equinox epoch MEpoch
JTRUE true equator, equinox epoch MEpoch
APP apparent geocentric MEpoch
B1950 mean equator, equinox B1950.0
BMEAN mean equator, equinox epoch MEpoch
BTRUE true equator, equinox epoch MEpoch
GALACTIC galactic coordinates
HADEC topocentric HA/Dec MEpoch

MPosition
AZEL topocentric Az/El (N ⇒ E) MEpoch

MPosition
AZELSW topocentric Az/El (S ⇒ W) MEpoch

MPosition
AZELNE = AZEL MEpoch
JNAT geocentric natural frame MEpoch
ECLIPTIC ecliptic for J2000.0 equator, equinox
MECLIPTIC ecliptic for mean equator of date MEpoch
TECLIPTIC ecliptic for true equator of date MEpoch
SUPERGAL supergalactic coordinates
ITRF direction in ITRF Earth frame MEpoch

MPosition
TOPO apparent topocentric MEpoch
MERCURY from JPL DE table MEpoch
VENUS MEpoch
MARS MEpoch
JUPITER MEpoch
SATURN MEpoch
URANUS MEpoch
NEPTUNE MEpoch
PLUTO MEpoch
SUN MEpoch
MOON MEpoch
COMET any solar-system body MEpoch

Table2

DEFAULT = J2000

2The table needed contains a list of directions and distances as a function of MJD.
The table can be generated from a standard formatted ascii text by the measuresdata

Glish module. See there for how to generate a table. In future an XML driven parser
could be used

19

A.2.4 MBaseline

A 3-dimensional vector, indicating a direction with a length (but no defined
zero point). In principle they are identical to the MDirection directions. At
the momemt the solar system bodies are not a valid baseline direction, but
that could change.

MBaseline

Code Description Frame info

J2000 mean equator, equinox J2000.0

JMEAN mean equator, equinox epoch MEpoch

JTRUE true equator, equinox epoch MEpoch

APP apparent geocentric MEpoch

B1950 mean equator, equinox B1950.0

BMEAN mean equator, equinox epoch MEpoch

BTRUE true equator, equinox epoch MEpoch

GALACTIC galactic coordinates

HADEC topocentric HA/Dec MEpoch
MPosition

AZEL topocentric Az/El (N ⇒ E) MEpoch
MPosition

AZELSW topocentric Az/El (S ⇒ W) MEpoch
MPosition

AZELNE = AZEL MEpoch

JNAT geocentric natural frame MEpoch

ECLIPTIC ecliptic for J2000.0 equator, equinox

MECLIPTIC ecliptic for mean equator of date MEpoch

TECLIPTIC ecliptic for true equator of date MEpoch

SUPERGAL supergalactic coordinates

ITRF direction in ITRF Earth frame MEpoch
MPosition

DEFAULT = ITRF

A.2.5 Muvw

A 3-dimensional vector, indicating a UVW -coordinate.

20

Muvw

Code Description Frame info

J2000 mean equator, equinox J2000.0

JMEAN mean equator, equinox epoch MEpoch

JTRUE true equator, equinox epoch MEpoch

APP apparent geocentric MEpoch

B1950 mean equator, equinox B1950.0

BMEAN mean equator, equinox epoch MEpoch

BTRUE true equator, equinox epoch MEpoch

GALACTIC galactic coordinates

HADEC topocentric HA/Dec MEpoch
MPosition

AZEL topocentric Az/El (N ⇒ E) MEpoch
MPosition

AZELSW topocentric Az/El (S ⇒ W) MEpoch
MPosition

AZELNE = AZEL MEpoch

JNAT geocentric natural frame MEpoch

ECLIPTIC ecliptic for J2000.0 equator, equinox

MECLIPTIC ecliptic for mean equator of date MEpoch

TECLIPTIC ecliptic for true equator of date MEpoch

SUPERGAL supergalactic coordinates

ITRF direction in ITRF Earth frame MEpoch
MPosition

DEFAULT = ITRF

A.2.6 MEarthMagnetic

A 3-dimensional vector: the value of the Earth’ magnetic field. The model
used to calculate the field is the International Geomagnetic Reference Field.
The IGRF field is a virtual field, without any value. It obtains its value
after an explicit conversion to a normal, real coordinate system.

21

MEarthMagnetic

Code Description Frame info

IGRF the international reference field
model

MEpoch
MPosition

J2000 mean equator, equinox J2000.0

JMEAN mean equator, equinox epoch MEpoch

JTRUE true equator, equinox epoch MEpoch

APP apparent geocentric MEpoch

B1950 mean equator, equinox B1950.0

BMEAN mean equator, equinox epoch MEpoch

BTRUE true equator, equinox epoch MEpoch

GALACTIC galactic coordinates

HADEC topocentric HA/Dec MEpoch
MPosition

AZEL topocentric Az/El (N ⇒ E) MEpoch
MPosition

AZELSW topocentric Az/El (S ⇒ W) MEpoch
MPosition

AZELNE = AZEL MEpoch

JNAT geocentric natural frame MEpoch

ECLIPTIC ecliptic for J2000.0 equator, equinox

MECLIPTIC ecliptic for mean equator of date MEpoch

TECLIPTIC ecliptic for true equator of date MEpoch

SUPERGAL supergalactic coordinates

ITRF direction in ITRF Earth frame MEpoch
MPosition

DEFAULT = ITRF

A.2.7 MFrequency

The MFrequency class describes the characteristics of an electro-magnetic
wave. Internally the value is in Hz, but an MFrequency object can be
constructed from any characteristic that is understood (period, frequency,
angular frequency, wavelength, wave number, energy, momentum).

The MFrequency class has special methods to convert the frequency from
an MDoppler object, if a rest frequency is known.

22

MFrequency

Code Description Frame info

REST spectral line rest frequency MDirection
MRadialVelocity

LSR dynamic local standard of rest MDirection

LSRK kinematic local standard of rest MDirection

BARY barycentric frequency MDirection

GEO geocentric frequency MDirection
MEpoch

TOPO topocentric frequency MDirection
MEpoch
MPosition

GALACTO galactocentric frequency MDirection

DEFAULT = LSR

A.2.8 MRadialVelocity

The MRadialVelocity class describes the radial velocity of an astronomical
object. Internally the value is in m/s. Methods are available (if the rest
frequency of a spectral line is known), to convert the velocity to a frequency.
Also, the radial velocity can be derived from an MDoppler object, which has
the radial velocity in the often better known redshift or radio-astronomical
Doppler shift.

MRadialVelocity

Code Description Frame info

LSR dynamic local standard of rest MDirection

LSRK kinematic local standard of rest MDirection

BARY barycentric frequency MDirection

GEO geocentric frequency MDirection
MEpoch

TOPO topocentric frequency MDirection
MEpoch
MPosition

GALACTO galactocentric frequency MDirection

DEFAULT = LSR

23

A.2.9 MDoppler

The MDoppler class describes the radial velocity of an astronomical object in
a variety of special astronomical “Doppler” shifts. It can be generated from
quasi velocities; or from a dimensionless quantity, interpreted as a fraction
of the velocity of light.

Conversion to a “real” radial velocity is possible with this class. In the
following F stands for ν/ν0, where ν0 is the rest frequency.

MDoppler

Code Description Frame info

RADIO radio definition: 1− F
Z redshift: −1 + 1/F

RATIO frequency ratio: F

BETA relativistic: (1− F 2)/(1 + F 2)

GAMMA (1 + F 2)/2F

OPTICAL = Z

RELATIVISTIC = BETA

DEFAULT = RADIO

24

	Introduction
	Background
	Conversion
	Efficiency
	Measure or MeasValue
	Re-use the effort of frame
	Re-use of conversion objects
	Specialized conversion engines
	EarthMagneticMachine
	VelocityMachine
	UVWMachine

	Specifying execution details

	Interface
	Getting values from a Measure
	Getting values from a MeasValue
	Obtaining information from the MeasFrame

	Appendix
	Background literature
	Details for individual Measures
	MEpoch
	MPosition
	MDirection
	MBaseline
	Muvw
	MEarthMagnetic
	MFrequency
	MRadialVelocity
	MDoppler

