
NOTE 255 – Casacore Table Data System

Ger van Diepen, ASTRON Dwingeloo

2020 March 3

Abstract

The Casacore Table Data System (CTDS) is a database-like system
to store scientific data in a columnar way. It comes with a versatile
SQL-like query language.

1.0 2003 Feb 3 Original version
2.0 2020 Mar 3 Added links and descriptions of new options

1 Introduction

The Casacore Table Data System (CTDS) is based on the table model out-
lined by Allen Farris in the beginning of 1992. At the start of the AIPS++
project it was decided to develop the Table System as no other package
seemed to support the flexibility wanted.

See the old AIPS++ data base document for a description of the very
first version of the Table System. Since then the system has been changed
and enhanced considerably. The description of the Tables module gives a
good overview of the current capabilities.

The Table System is used throughout the AIPS++ project to offer uni-
form access to all data. The table browser can be used to view all kind
of tables. Particular examples of AIPS++ data stored in tables are the
MeasurementSets and the Images.

In the remainder of this document the most important properties of
the Table System are given. Thereafter the strong and weak points are
discussed.

2 Global Features

• The Table System resembles a data base system. It consists of tables
containing columns with data of any basic AIPS++ data type (integer,

1

../../reference/Database.ps
../html/group__Tables__module.html


floating point, complex, string). Support for keywords (a la FITS) is
provided. Furthermore it supports arrays of all data types (thus not
only as blobs). It is, for example, possible to get a slice of an array in
the table. The shapes of arrays in a column can be fixed or variable.
A column or keyword data type can also be a record making it possible
to store AIPS++ Record objects into the keywords or column cells.
Finally a keyword can contain a reference to another table which is
used for subtables of a table (as extensively used in the Measure-
mentSet).

• Meta data describe the table layout and help to quickly find data.
Table System access is based on row number.
Persistent indices on table data are not supported, but temporary
memory based indices make it possible to quickly find the row numbers
containing the required data.

• All I/O is done by means of a storage manager layer, so the logical and
physical view of a table is well separated. A table can have multiple
storage managers, so each column can be stored in the way most suited
for the data in that column. Furthermore the Table System supports
so-called virtual columns. The data in those columns are not stored
but derived on-the-fly from other data. This feature is mainly used to
compress columns containing complex data to short integers.
The tiled storage manager (TSM) is a unique feature of the Table
System. It makes it possible to store array data in a tiled way to
achieve that access along all axes is about equally fast.
All storage managers store the data in a canonical format to make
access from multiple platforms possible. Boolean values are stored as
bits.

• Concurrent access is fully supported. However, only table locks are
available, thus no fine-grained page or row locking is possible. See
note 256 for more information about locking in the Table System.

• The Table System uses large files where possible, so there is no 2 Gb
file limit. On the rare systems not supporting large files the storage
managers can be chosen such that each individual file does not exceed
2 Gb.

• Access to the data is very flexible. Addition, change, retrieval, and
removal of columns, rows, and keywords can be done at will.

2

256.html


• A powerful query language (see note 199 on TaQL) makes it possible
to select arbitrary subsets of a table. TaQL resembles SQL, but lacks
joins. However, it supports subqueries and moreover all its functions
work on arrays as well.
It is important to note that the result of a selection and sort is a
table in itself which references the original data (i.e. shallow copy).
So changing the data in a selection changes the original data. This is
regarded as being very useful. There is a function available to turn a
selection into a deep copy.

Note that TaQL can also be used for doing queries on in-memory
objects. This is used in the ACSIS system to make a selection from a
set of Record objects.

• The TableMeasures module makes it possible to store and retrieve
Measures transparantly in and from a table.

3 Where are Tables used

As said above the Table System is the main AIPS++ storage mechanism.

3.1 MeasurementSet

The MeasurementSet uses tables to its full extent. It consists of a main
table containing the main data. Several subtables contains additional in-
formation like the description of antennas, feeds, sources, etc.. Usually the
TiledShapeStMan tiled storage manager is used to hold the data in the main
table. This storage manager is capable of handling arrays with varying sizes.
A tile is 3-dimensional with axes correlation, frequency, and rest (meaning
time, baseline, fieldid, etc.). In principle this tiling offers equally fast access
when accessing data in frequency direction or in time or baseline direction.
However, because the rest axis contains both time and baseline, the access
can sometimes be slowish.

3.2 Image and Lattice

An image is stored as a table where the image array is stored using the tiled
storage manager. An image can have zero or more masks. Each mask is a
boolean array stored in a subtable. Furthermore an image has a log table
(for history) which is also stored as a subtable. Other image information
(like coordinates) is stored as keywords.

3

199.html
../html/group__TableMeasures__module.html
../html/group__Measures__module.html
229.html


Images are using the so-called lattices which are memory-based or disk-
based arrays. Lattices can easily be traversed in any order. The Lattice
Expression Language makes it possible to define expressions from lattices.
Lattices are commonly used in AIPS++. For instance, the autoflagger uses
lattices to assemble statistical information for automatically flagging Mea-
surementSet data.

3.3 Log Table

All log information of AIPS++ sessions are stored in the log table. In
general it works fine, but if the log rate is too high the system cannot cope
with it. The main reason is that the log table can be filled from several
processes, so it has to extensively use table locking for synchronization. It
would be better if a single logging client was running, so the log table had
only one process writing into it.

3.4 Miscellaneous

Other places where tables are used are:
- Calibration tables
- Observation catalog
- Sky catalog (used by viewer)
- Tables used by Measures system (IERS tables, etc.)
- Westerbork TMS system

4 Benefits

4.1 Data types and arrays

All standard data types are supported (char, short, integer, float, double,
string). Also single and double precision complex data types are supported.
A big advantage of the Table System is that it can handle scalars as well as
arrays of all thosetypes.
Another benefit is that Measures can be stored in tables.

4.2 Storage Managers

The Table System has some specific data (storage) managers:

• The Incremental Storage Manager can save quite some storage by only
writing data when they change. In the main table of the Measure-
mentSet it is quite heavily used.

4

223.html
223.html


• The Tiled Storage Manager is used to store data in a tiled way. It
makes it possible to access to image along all axes in an equally fast way
(depending on the tile shape). Comparison with a package like Miriad
showed that you pay a little penalty for access in the X-direction, but
it is much, much faster in the Z-direction.

• The ComplexCompress data manager makes it possible to compress
single precision floating point data to short integers to save a factor 2
in storage. It is completely transparant to the application and user,
so one still sees the floating point data.

4.3 Concurrent access

The ability of safe concurrent access is very nice. Despite its shortcomings,
autolocking makes life very easy, since it frees the user from all locking issues.

4.4 TaQL

TaQL is a very versatile query language with full support of arrays. Users
highly appreciate it because it offers easy selection of subsets of a table.
Since these subsets are also tables (referencing the original data), one can
easily change the data in a subset of a table. TaQL can also be used to sort
a table or to sort it uniquely.
The support of arrays makes TaQL in a way superior to SQL. Some selections
can be expressed very elegantly in TaQL, while being tedious in SQL. E.g.
selecting baselines 0-1, 1-2, 2-3, 3-5 can be done in TaQL as

where any(ANTENNA1=[0,1,2,3] && ANTENNA2=[1,2,3,5])

TaQL can operate on data arrays in a table, while SQL can only deal with
scalar data.

4.5 Glish access

Users greatly appreciate the ease of access via glish. Using the glish functions
and tools like TaQL and the table browser it is very easy to examine and
inspect the data and change them when needed.
Many users have written scripts to process the data in glish using TaQL and
the table access functions in glish.

A widget (taqlwidget) exists to form TaQL commands in a query-by-
example style.

5



5 Known Shortcomings

5.1 Access times

Retrieving data from a table is slower than retrieving it from a flat file. It
depends on the type and the shape of the data and on the storage manager
used. Tests show that retrieving an array from a Table using a Tiled Storage
Manager can be about 50% slower than reading it from a raw file when
accessing the data sequentially. This degradation in performance has to be
weighed against the benefits supported by the Table System as described in
the previous section.

Note that measuring IO performance is not as easy as it looks because
the UNIX file system keeps small files in memory (small can be as large as
100 Mbytes). One should always do an fsync to be sure the data are flushed
to disk.

The main problem seems to be accessing the data in the MeasurentSet in
the calibrater or imager. Apart from the 50% degradation discussed above,
there can be other reasons for it. One is that the data is usually accessed in
a different order than it was stored. Maybe this could be solved partially by
storing the data per spectral window. Another thing that might be useful
is to use another storage manager than the tiled one.

It is important to note that the TMS system for Westerbork started with
use of Sybase for its data bases. They decided, however, to switch to the
AIPS++ Table System because it performed much better than Sybase for
their particular application.
No comparisons have been made between the Table System and a data base
system like MySQL or PostgreSQL. Doing comparisons may be hard because
performance will usually be highly application dependent.

5.2 Non-blocking IO

The storage managers only use simple synchronous I/O, though they use a
cache to buffer often used data. Non-blocking I/O nor file mapping is used.
Especially non-blocking I/O might improve performance, but it requires
extra buffer space. It might also be needed to provide more functionality
for giving hints about access patterns.

5.3 Robustness

In the early days the Table System was not very robust, but it has improved
over the years. In occasional circumstances the data in a table can be cor-

6



rupted. This could be the case when the system crashes while a critical data
portion is written into the table. However, in practice it hardly ever hap-
pens because especially in the now commonly used StandardStMan storage
manager quite some attention has been paid to robustness.

5.4 Standards

The Table System is not a commonly used piece of software as, for example,
MySQL is. It means that only a Glish binding is available. However, it
would be not too much work to make, say, a Python binding.

5.5 Locking

Table locking can be problematic if not done properly.
Locking can only be done on the entire table, so for full multi user access a
lock should be held as short as possible. On the other hand releasing a lock
means that the buffers needs to be flushed to disk, so the extra IO involved
could mean that one wants to hold the lock as long as possible.
The AutoLocking mode was invented to solve this problem. However, it has
the drawback that it may take a few seconds before the system detects that
the AutoLock should be released. This is especially the case in a glish client
which might be idle for some time. It is now possible to define the AutoLock
inspect time in aipsrc, so one can set it as short as needed.

5.6 TaQL

Although TaQL supersedes SQL with its array capabilities, it lacks several
nice SQL features. The most imporatant are:

• joins

• GROUP BY and HAVING

• calculated columns in SELECT

6 Future

The current Table System shows some shortcomings, especially in the area
of parallel data IO. This area will get more and more important. Current
instruments can already produce lots of data, but future instruments like
ALMA and LOFAR will produce even much more.

7



Because the I/O in the Table System is done in a separate layer, it should
in principle be possible to enhance it with other forms of I/O like parallel
and networked I/O. However, other high performance data I/O libraries
exist and it should be studied if it is better to use such a library. HDF5 is
such a library. It has an C++ and Java interface and a viewer written in
Java. It supports array tiling (chunking in their terminology).

6.1 Data Storage

Before deciding on how to proceed with a data system the requirements
should be clear. It is clear that (near) future systems have to process ob-
servations possibly consisting of several terabytes of data. Full support of
parallel processing and I/O are needed, but it is the question how.

The optimal way of parallel processing is that the processing is done on
the host where the data are. Thus a client should only ask for the result
and not for the data themselves. Of course, this is not always possible. It
should also be possible for a client to get file data from another node, thus
parallel and networked I/O is needed. Parallel I/O will be very important
when data are stored in a SAN.

An example might be an image of 4000*4000*4000 float pixels. Such an
image might be tiled and spread over several nodes. Many operations (like
finding minimum/maximum, adding images) can be done locally on those
nodes. So the data system and processing system have to collaborate for
optimal performance.
Another example is the selfcal of a very large MeasurementSet. The predict
can be done on the node where the data resides and only the residuals and
derivatives are sent to the solver. Sometimes, it might even be possible that
a solve is done locally.

Data bases are not useful for such data. They lack the ability to deal
with large arrays of data or to access chunks of them.

6.2 Administrative tables

Several other tables (log tables, observation catalogs) can be handled with
standard data base technology. Public domain packages like MySQL or
PostgreSQL should be evaluated. It might be needed to add special indices
to deal with queries like a conus in the sky, although it is expected that such
functionality already exists.

In principle it is possible to make a storage manager in the Table System
that uses a data base system. It is the question whether that is worthwhile.

8

http://hdf.ncsa.uiuc.edu/HDF5


The advantage would be that TaQL could still be used to have support for
data arrays in queries.

6.3 Archived Data

Some institutes (e.g. Westerbork) have archived MeasurementSets. They
are archived in ms2archive format. When support of the Table System
is stopped, a tool should be provided to retrieve these archived Measure-
mentSets in the new data format.

9


	Introduction
	Global Features
	Where are Tables used
	MeasurementSet
	Image and Lattice
	Log Table
	Miscellaneous

	Benefits
	Data types and arrays
	Storage Managers
	Concurrent access
	TaQL
	Glish access

	Known Shortcomings
	Access times
	Non-blocking IO
	Robustness
	Standards
	Locking
	TaQL

	Future
	Data Storage
	Administrative tables
	Archived Data


