
NOTE 256 –Casacore Table Locking

Ger van Diepen, ASTRON Dwingeloo

2020 March 3

Abstract

The Casacore Table Data System (CTDS) supports single writer
and multiple readers by means of table locking (which uses the OS file
locking). However, if the OS has no or limited support of file locking,
it is possible to disable table locking.

1.0 2003 Feb 10 Original version
2.0 2020 Mar 3 Describe nolocking modes

1 Introduction

The Casacore Table Data System (CTDS) is used to store all data in the
Casacore environment. CTDS supports concurrent access by means of table
locking. The user can control if and how the table locking is used which may
have impact on the performance of the Table System. This note describes
the various ways in which a table can be locked and the best ways to use
them.

2 Locking and Synchronization

Before a table can be read or written, an appropriate lock has to be acquired.
As in most systems there are two types of locks:

• A read lock (also called shared lock) is used to grant a process read-
access to a table. At a given time multiple processes can have a read
lock on the same table (hence shared lock).

• A write lock (also called exclusive lock) is used to grant a process
write-access to a table. At a given time only one process can have a
write lock on a table (hence exclusive). If a write lock is acquired, no

1

../255.html


read lock on that table can exist at the same time. Thus at a single
time there can be one writer or multiple readers.

The locking assures that the internal buffers of CTDS are synchronized and
kept consistent.

Note, however, that CTDS also supports modes to skip table locking
which can be useful for systems with no or limited support of file locking
(such as Lustre).

• CTDS can be built with -DAIPS TABLE NOLOCKING which dis-
ables table locking entirely.

• Similarly, setting the aipsrc variable table.nolocking to True dis-
ables table locking.

• Table lock option NoLocking can be used to disable locking for the
table opened with that option.

• Table lock option NoReadLocking can be used to read a table without
locking. That implies that no synchronization is done before the read,
unless it is explicitly done. It is described in a later section.

Of course, disabling locking should be used with great care. One has to
be sure that no race conditions can occur.

CTDS only supports locks on the entire table; there is no fine-grained
page or row locking. Thus if a process is updating a table, no other process
can read or update any part of that table. Of course, different tables can be
accessed simultaneously.

Basically there are two functions in CTDS to handle locking.

• Table::lock can be used to acquire a read or write lock. Note that
a write lock also grants read-access. Internal data buffers will be re-
freshed as needed.

• Table::unlock can be used to release a lock. It will flush the internal
data buffers to disk if they are changed.

2.1 Synchronization

CTDS uses a special lock file (table.lock) in the table directory to hold in-
formation about the storage managers containing data changed in a lock/unlock
cycle. That information is used to achieve that a process acquiring a lock

2



only refreshes the buffers really needed. This saves a lot of needless buffer
refreshing.

Apart from changing data, a table can also change by adding or removing
rows, keywords, or columns. These changes are also synchronized with the
exception of added or removed columns. Such changes mean that the layout
of the table is changed. Alas the Table System cannot cope with such
changes yet (it will in a future version). If it detects that a column is added
or removed, the synchronization function throws an exception.

CTDS uses the file locking functions provided by the operating system to
do the actual locking. For UNIX systems it means that the fcntl function
is used. This also works fine for NFS files provided that the lockd and
statd deamons are running (which is usually the case).

The first few bytes of the lock file form the data part that is being used
for the locking.
Furthermore an extra lock is used to keep track of the tables that are open
in any process. This is used by CTDS to prevent a table from being deleted
while another process is still accessing it.

Note that on a UNIX system file locks are handled per inode. That
means that if the same file is opened twice an unlock on one the the file
descriptors also unlocks the other file descriptor. CTDS usually opens a
table only once. However, if opened with a different name, CTDS might
not recognize that the file bas been opened already and open it again in the
same process. However, in practice it never happens.

3 Locking Modes

Data base systems usually hold locks only for a short period of time. It
means that buffers have to be flushed often because another process needs
up-to-date data. A flush can be expensive as it involves I/O.
It was believed that this would be too limiting for CTDS, because many
processes prefer to lock a table for as long as possible to avoid too many
flushes. Therefore three locking modes are supported by Casacore. They
can be given when a Table object is constructed. In order high to low they
are:

1. PermanentLocking locks the table for the full session, so no other pro-
cess can use it. It is always locked for read. It is locked for write if
the table is not opened as readonly.

3



This mode is rarely used, because it makes concurrent access impossi-
ble (unless another process uses NoReadLocking). However, in some
circumstances it might be useful. Note that in this mode lock and
unlock calls can still be done, but they are not doing anything.

2. AutoLocking locks automatically when a read or write needs to be
done and the table does not have an appropriate lock yet. Unlocking
is done automatically at an appropriate time.
This mode makes concurrent access possible and tries to hold the lock
as long as possible. Furthermore the programmer does not have to
worry about (un)locking, although it is still possible to do explicit
locking and unlocking.
The problem with this mode is that automatic unlocking can only be
done when possible. Therefore it could happen that a table is locked
for a longer period than expected. It is discussed in more detail in a
later section.

3. AutoNoReadLocking is the same as AutoLocking, but no locks are
needed when reading the table. NoReadLocking is discussed in another
section.

4. UserLocking means that locking and unlocking have to be done ex-
plicitly.
This mode gives the finest control, but it it may be hard for the pro-
grammer to decide how fine-grained it should be used. On one hand
not too fine, because it involves a lot of flushing. On the other hand
fine enough to give other processes the opportunity to grab a lock. An
exception is thrown if a read or write is done before an appropriate
lock is acquired.

5. UserNoReadLocking is the same as UserLocking, but no locks are
needed when reading the table. NoReadLocking is discussed in another
section.

6. DefaultLocking is the same as AutoLocking. It is lower in the hier-
archy when merging locking modes (see next section).

7. NoLocking disables read and write locking for the given table. in the
hierarchy when merging locking modes (see next section).

The default locking mode is DefaultLocking.

4



3.1 Locking Mode Merge

It is possible that in a process multiple Table objects are created for the
same table. These Table objects share the same underlying BaseTable

object doing the actual locking. Since each Table object can be created
with its own locking mode, those locking modes have to be merged in the
BaseTable object. The merge result is the locking mode with the highest
position in the locking mode table.

3.2 Locking Mode for a Subtable

Table objects for subtables are created automatically when the table is
retrieved from a keyword set like:

Table tab(‘‘test.ms’’);

Table anttab(tab.keywordSet().asTable(‘‘ANTENNA’’));

In this way it inherits the locking mode of its parent (Base)Table object.
However, there is a second asTable function accepting a locking mode. In
that way a subtable can be opened with a given locking mode.

4 How to lock and unlock

As explained above locking and unlocking has to be done explicitly for User-
Locking and can optionally be done for AutoLocking.

Function Table::lock is used to acquire a lock. It can be specified if
a read or write lock is needed. If the lock cannot be acquired immediately,
the process will be added to a list (in the lock file) to indicate that it needs
a lock. The list is used by AutoLocking (see below). Thereafter it will try
again to acquire the lock until nattempts is reached. It sleeps a little while
between each attempt. After 30 attempts a message is sent to the logger
telling that the process is waiting for a table lock. If the lock could be
acquired, the process is removed from the list.
Having acquired a lock means that the internal table and storage manager
buffers are refreshed as needed.

Function Table::unlock releases a lock. If table data have been changed
since the lock was acquired, it will flush the changed table and storage
manager buffers and indicate in the lock file which storage managers were
changed.

5



4.1 class TableLocker

It should be clear that when using lock/unlock explicitly, care should be
taken that the unlock is also done in case of exceptions. This can be quite
cumbersome. Therefore the class TableLocker has been created. Its con-
structor acquires a lock, while the destructor releases it. C++ scoping can
be used to invoke the destructor automatically. E.g.

Table tab(‘‘test.ms’’, Table::UserLocking);

{

TableLocker locker(tab, FileLocker::Read); // acquire read lock

... write data into the table ...

} // end of scope, so TableLocker destructor is called

The nicest thing of using TableLocker in this way is that in case of an
exception its destructor is called, thus the lock is always released.

5 AutoLocking working

AutoLocking is a handy mode because it frees the user from having to do
explicit locking and unlocking. Furthermore it has the advantage that it
does not release a lock before another process needs it. This advantage is
at the same time the weakness of AutoLocking, because it may take a while
before a process holding a lock recognizes that another process needs a lock.
For this to understand it is explained how AutoLocking works.

1. When table I/O is done, it is checked if the table is appropriately
locked. If not, it is tried to acquire a lock with TableLock::maxWait

as the maximum number of attempts (default is trying forever).

2. Unlocking is also done automatically. After some I/O-s are done,
CTDS inspects the list in the lock file to see if another process needs
the lock. If so, it releases the lock. The inspection interval can be
defined in the TableLock constructor and defaults to 5 seconds.

In general this scheme works fine, but the problem is that if no I/O is
done, CTDS does not check if another process needs a lock. This is espe-
cially a problem for glish clients as they can be idle for some time wait-
ing for a command to be given. To circumvent this problem the function
Table::relinquishAutoLocks can be used to release locks on tables using
AutoLocking. Either all such tables are unlocked or only the tables needed
by another process.

6



5.1 Releasing AutoLocks in Glish Clients

Care has been taken that glish clients do not hold AutoLocks too long. Glish
clients time out after some period and call Table::relinquishAutoLocks
to release AutoLocks at regular intervals. The time out period is controlled
by two aipsrc variables. They are:

• table.relinquish.reqautolocks.interval defines the number of
seconds to wait before relinquishing autolocks requested in another
process. The default is 5 seconds.

• table.relinquish.allautolocks.interval defines the number of
seconds to wait before relinquishing all autolocks. The default is 60
seconds.

The user can define these variables at will, but usually the defaults suffice.

6 NoReadLocking

Normally locking should be used to read data from a table because in that
way it is assured that the data is always consistent. However, in some cases
it might be useful to be able to read data from a table without having to
acquire a lock. That could, for instance, be the case for an online process
filling a MeasurementSet. It should not happen that such a process has
to wait for a write lock because some other process is holding a read lock.
NoReadLocking is possible with AutoLocking and UserLocking modes.

The NoReadLocking option makes it possible to read table data without
acquiring a read lock. It means that the internal buffers are not automat-
ically synchronized with the data on disk. It is possible though to do that
explicitly using the function Table::resync. For this to work well, the
writer should flush its data regularly, otherwise it may take a long while
before data appears on disk.

Often a NoReadLocking reader is coupled to the writer by means of
interprocess communication. In such cases it is best that the writer tells the
reader when it should resync and read.

7 Lock Information

Sometimes it is not clear which process is holding a lock. A glish function
in os.g has been made to tell the user if a table has been opened in some
process and if and how it has been locked.

7



dos.showtableuse (’test.ms’)

prints this information for the given table. The function dos.lockinfo

returns this information in a glish record.
The information contains the PID of a process holding the lock or having

opened the table. Note that in case of a read lock multiple processes may
hold a lock. The PID of only one process is given in the information though.

8 Overview of classes/functions related to locking

A brief overview is given. For detailed information the relevant documenta-
tion should be examined.

8.1 class TableLock

This class defines the locking mode which can be given to the Table con-
structor. For AutoLocking mode a few parameters can be set.

8.2 class TableLocker

This class can be used to acquire and release a lock, especially in UserLocking
mode. As described above, it is particularly useful to ensure that a lock is
released in case of an exception.

8.3 Table functions

• Table constructor accepts a TableLock argument.

• lock tries to acquire a read or write lock and resync-s..

• unlock releases the lock and flushes the table buffers.

• hasLock tests if the table holds a read or write lock.

• canLock tests if the table can acquire a read or write lock.

• flush flushes the table buffers.

• resync resync-s the table buffers with the data on disk.

• hasDataChanged tests if the table has changed since the last time this
function was called.

• lockOptions gets the current locking mode.

8

../html/classcasa_1_1TableLock.html
../html/classcasa_1_1TableLocker.html
../html/classcasa_1_1Table.html


• isMultiUsed tests if the table is used in another process.

• nAutoLocks is a static function returning number of tables using Au-
toLocking.

• relinquishAutoLocks is a static function releasing some or all Au-
toLocks.

8.4 python and glish

pyrap contains the python interface pyrap.tables to CTDS. It has lock
functions similar to the ones in class Table.

The same is true for the old glish interface table.g

In os.g the functions showtableuse and lockinfo give information about
table locking.

9

../../../pyrap/docs/pyrap_tables.html

	Introduction
	Locking and Synchronization
	Synchronization

	Locking Modes
	Locking Mode Merge
	Locking Mode for a Subtable

	How to lock and unlock
	class TableLocker

	AutoLocking working
	Releasing AutoLocks in Glish Clients

	NoReadLocking
	Lock Information
	Overview of classes/functions related to locking
	class TableLock
	class TableLocker
	Table functions
	python and glish


