
NOTE 260 – CTDS File Formats

Ger van Diepen, ASTRON Dwingeloo

November 10, 2017

Abstract

The Casacore Table Data System (CTDS) uses several files to store data in. Each storage
manager has its own files. The document describes the formats of all files that can be used by
CTDS.

Contents

1 Introduction 3

2 AipsIO 4
2.1 Array object . 5
2.2 IPosition object . 6
2.3 Block and std::vector object . 6
2.4 std::map object . 6
2.5 TableRecord object . 6

3 PlainTable 8
3.1 General file table.dat . 8

3.1.1 Table Description . 8
3.1.2 ColumnSet . 11

3.2 Info file table.info . 12
3.3 Lock file table.lock . 12
3.4 Storage Managers . 13

3.4.1 StandardStMan . 13
3.4.2 IncrementalStMan . 18
3.4.3 TiledStMan . 21
3.4.4 AipsIOStMan . 21
3.4.5 Indirect Array File . 21

3.5 Virtual Column Engines . 22
3.5.1 ForwardColumnEngine . 22
3.5.2 ScaledComplex . 22
3.5.3 VirtualTaQLColumn . 22

4 RefTable 22

1

5 ConcatTable 22

6 MultiFile Format 22
6.1 MultiFile . 22

6.1.1 MultiFile version 1 . 22
6.1.2 MultiFile version 2 . 23

6.2 MultiHDF5 . 25

2

1 Introduction

The Casacore Table Data System (CTDS) is an RDBMS-like system to store data in tables con-
sisting of a number of columns and rows. The table and each column can have an associated set
of keywords to define global table data (such as subtable names) or column specific data (such as
units). The keywords are meant for small amounts of data. The bulk data will be stored in the
column-row cells.

Besides the usual scalar data, a table column or keyword can hold N-dimensional arrays. The
data type of a keyword and scalar or array column can be:

• Bool, boolean values which are often stored as bits

• uChar, unsigned 8-bit integer

• Short, signed 16-bit integer

• uShort, unsigned 16-bit integer

• Int, signed 32-bit integer

• uInt, unsigned 32-bit integer

• Int64, signed 64-bit integer

• Float, 32-bit IEEE floating point

• Double, 64-bit IEEE floating point

• Complex, real and imaginary 32-bit float

• DComplex, real and imaginary 64-bit float

• String, ASCII string array with a fixed or variable size

Besides these basic types it is also possible to store (Table)Record objects which are basically
maps of name strings to values of one of the data types mentioned above. The records can be nested
arbitrarily deeply. When stored in a column, a record is serialized (using AipsIO) to a uChar array
and stored as such.

There is a strict distinction between the logical and physical model of the data columns. The
table description defines the logical model, while data managers (storage managers and virtual data
managers) implement the physical model.

On disk a CTDS table is a directory containing a number of files to hold data and meta data.
The formats of these files vary and can have quite complicated structures.
A table can have a zero or more subtables that are usually stored as a subdirectory of the main
table. A good example of such a table is the Casacore MeasurementSet (see note 229.

A CTDS table can be a reference to one or more other tables which is comparable to a view in
a relational data base. CTDS supports a few types of tables.

• A PlainTable is the basic table type. It contains all data, either stored on disk using storage
managers or calculated on-the-fly using virtual data managers.

3

casacore.github.io/casacore-notes/229.html

• A RefTable is a referencing table. It only references rows in another table. Usually it is the
result of a select, sort, or iteration operation on another table. The subtables of a RefTable
are the same as those of its parent; it references them.

• A ConcatTable is the virtual concatenation of tables with an identical structure (identical
columns). It only references the tables to be concatenated. The subtables of a ConcatTable
can be concatenated at will. It means that a subtable can be the subtable of the first table
or a concatenation of the subtable in all tables.

On disk all table types consist of a directory with the name of the table and several files. The
following two files are always present. A PlainTable can contain several more files.

• table.dat is a binary file holding the table meta data. It contains the table description and
the information how columns are mapped to data managers. It also contains the keyword
sets. The first part of its contents is the same for all table types. The remainder is type
specific.

• table.info is a text file containing a brief description of the table.

This document describes the format of all files that are part of the core CTDS. Note that CTDS
can also use arbitrary storage managers dynamically loaded from a shared library. The file formats
of such third party storage managers are not described in this document.

CTDS is designed such that it is fully backward compatible. Version information make it
possible that even tables from the very first days can be read back despite the fact that the format
has changed considerably.
CTDS understands both little and big endian data representations. At table creation time it is
decided which one to use which normally is the local endian type.

2 AipsIO

CTDS makes heavily use of the AipsIO class to store its meta data. Therefore a brief description
of the AipsIO format is given.
AipsIO is basically a mechanism to serialize a C++ object into a stream of bytes and to read it
back. The format consists of a header followed by the object’s data. The objects can be nested
arbitrary deeply. The maximum total size is 4 GBytes.
The header contains the following fields:

Data Type Description

uInt Object length (including the header)
String Object type
uInt Version

The version can be used to make software fully backward compatible in case an object changes
over time. This feature is used a lot by CTDS to be able to access tables created by older CTDS
versions.
The object data are stored after the header as a stream of bytes. The data are unaligned in the
stream, thus, say, a float does not need to start at a multiple of 4 bytes.

4

The length of an object is the total length; it includes the length of the header and the length of
possibly nested objects. Of course, each nested object has its own header.
The following native data types are supported. Other data types (classes) can be supported by
writing the appropriate shift functions (similar to the C++ std::iostream). A few such objects used
by CTDS are described in subsequent sections.

Bool 1 byte
Char and uChar 1 byte
Short and uShort 2 bytes
Int and uInt 4 bytes
Int64 and uInt64 8 bytes
Float 4 bytes IEEE
Double 8 bytes IEEE
Complex 2 Floats
DComplex 2 Doubles
String uInt length followed by its characters (can be length 0)
C-array uInt length followed by its elements (can be length 0).

A bool C-array is compressed to bits.

AipsIO can store the data in little or big endian order. In fact, it can also handle the old
VAX/VMS and IBM/360 data formats.
CTDS only uses the canonical AipsIO format (which is big endian).

2.1 Array object

Templated Array<T> objects are used quite heavily in Casacore. Only arrays with a size up to
2**31 bytes can be stored in AipsIO. An Array object is stored as follows.

header Array (version 1, 2, or 3)
uInt number of dimensions
uInt[ndim] ndim shape values
Int[ndim] origin (only present for version < 3); it is ignored
T[nelem] all array values. Bools are compressed to bits.

• Casacore Array objects hold their data in Fortran order (fastest varying axis first). The shape
and data are also stored that way.

• In principle the template parameter can be of any type. However, CTDS only uses Arrays of
the standard types.

• Until 1995 the Array class supported an origin. It has been removed because it was a source
of errors. Theoretically an origin can still be present in Array objects in very old tables. If
so, it is read and silently discarded.

• Before RTTI was fully supported in C++, Casacore used its own RTTI functionality. At
that time the name of the template parameter was made part of the AipsIO header, for
example Array<Int>. Once the standard C++ RTTI was used by Casacore, this was not

5

done anymore and an array of any type has the same header name Array. When reading an
older Array object from AipsIO, the template part in the name (enclosed in angle brackets)
is still recognized, but not used anymore.

2.2 IPosition object

An IPosition object defines a shape of an array or a location in an array. It is stored in AipsIO as
follows.

header IPosition (version 1 or 2)
uInt number of dimensions
Int[ndim] shape (for version 1)
Int64[ndim] shape (for version 2)

Until 2009 a shape element was represented as a 32-bit integer, thereafter as a 64-bit integer.
To be as forward compatible as possible, an IPosition is still stored as version 1 if all elements in
the shape have a value fitting in a 32-bit integer.

2.3 Block and std::vector object

The templated Casacore Block class is basically the same as the std::vector class. Both are stored
in the same way in AipsIO, thus a Block can be read back as a std::vector and vice versa.

header Block (version 1)
uInt number of elements
T[n] the elements

Note that the number of elements is written as an unsigned 32 bit number. This is sufficient
since an AipsIO object cannot exceed 4 GB.

2.4 std::map object

Casacore had its own SimpleOrderedMap class before the C++ standard library with its std::map
class was developed. Nowadays Casacore only uses std::map, but for backward compatibility an
std::map object is serialized in AipsIO in the old SimpleOrderedMap way.
A std::map¡K,V¿ object is stored in AipsIO as follows.

header SimpleOrderedMap (version 1)
V default value; not used
uInt nentries (number of key-value pairs)
uInt increment (number of entries to add when the map is extended); not used
KV[nentries] nentries key-value pairs (first the key, then the value)

2.5 TableRecord object

A TableRecord object holds a set of keyword/value pairs. They are used in CTDS to represent the
keyword set attached to the table and each column.

6

A value can be a scalar or array of one the standard data types including complex and string values.
Furthermore a value can be a TableRecord in itself; the nesting can be arbitrarily deep. Finally a
value can be a Table object which is used to hold the subtables of a table.

A TableRecord is described by a RecordDesc object that also contains the descriptions of
possible nested records. A TableRecord can have a fixed or variable format. In CTDS only variable
format TableRecords are used.
In the very early days of CTDS a keyword set was stored in a very different way. Reading back
such keyword sets is still supported in the code.

A TableRecord is stored in AipsIO as follows:

Data Type Description

AipsIO header TableRecord (version 1)
RecordDesc The TableRecord description
Int record type (CTDS always uses variable format records)
any All values are stored consecutively. Their data types are defined in the Record-

Desc.
Scalars and arrays are stored in the standard AipsIO way.
For a nested TableRecord only the values are stored, because its description is
part of the record description. However, a nested empty TableRecord is stored
as such.
If a value is a Table, only the table name is stored. It is tried to make the
name relative to the name of the parent table. In that way moving a table has
no effect its subtable names. A relative name is prefixed with ././ if the full
parent table name has to be used as directory, while the prefix ./ is used if the
directory name of the parent table has to be used. Note that in all practical
cases (like a MeasurementSet) ././ is used as prefix.

The RecordDesc is stored as follows:

Data Type Description

AipsIO header RecordDesc (version 1 or 2)
uInt number of keywords
String keyword name
Int data type (from DataType.h)
Specific specific info for a value containing an array, Table, or Record.

- shape for an array (shape [-1] means it is not fixed). A shape is stored as a
vector of Int values.
- TableDesc name for a Table (empty name means it is not fixed).
- description for a Record.

String comment to explain the meaning of a keyword (not in version 1)

The latter 4 fields are repeated for each keyword.

7

3 PlainTable

A PlainTable object represents a basic CTDS table with its own keywords, columns, and associated
data managers. It is a directory containing several files named table.*.
Besides the files table.dat and table.info a PlainTable consists of the following files.

• table.lock is used to facilitate concurrent SWMR access (single writer, multiple readers) to
a table. Locks are acquired and released for this file as described (see note 256. Furthermore,
it contains information telling another process if a table has changed.

• Each storage manager has a file table.f<i>* to store the data. The storage managers are
numbered 0..n and use the number as the suffix i in the file name. Note that the numbers
do not need to be consecutive. This can happen in case a storage manager has been deleted
or a virtual data manager is used.

• A storage manager can use extra files, typically called table.f<i>i to store so-called indirect
arrays. The TiledStMan can use extra files called table.f<i> TSM<j>.

Note it is possible to combine these files into a single so-called MultiFile to reduce the number of
actual files.

3.1 General file table.dat

This file is the main table file. It contains the table definition, the keywords and their values, and
the binding of columns to data managers. It is basically a nested AipsIO object containing the
following fields.

Data Type Description

AipsIO header Table (version 1 or 2)
uInt number of table rows
uInt endianness (0=little, 1=big)
String table type (PlainTable)
TableDesc table description and table keyword set
TableRecord table keyword set (in version 1 only)
ColumnSet column data manager info and column keyword sets

Note that the set of table and column keywords is part of the table description. Only in the
very first CTDS version (before 1995), the table keyword set was stored separately. For backward
compatibility it is still possible to read such a keyword set, but it is not stored anymore.

It is instructive to use the UNIX strings command on a table.dat file. It shows all the strings
mentioned in this section.

3.1.1 Table Description

The TableDesc object contains the table description defining the logical view of a table. It contains
the name, data type, and some extra info of each column. Furthermore it contains the keyword set
attached to the table and each column. Finally it contains a private keyword set that is used by
the TableDesc object to hold some extra meta data.

8

casacore.github.io/casacore-notes/256.html

Data Type Description

AipsIO header TableDesc (version 1 or 2)
String name of table description
String version info of table description
String comment about table description
TableRecord table keyword set
TableRecord private table keyword set (not in version 1)
uInt ncol (number of columns)
ColumnDesc[ncol] description of each column

A ColumnDesc object defines a column and is stored as follows.

9

Data Type Description

uInt ColumnDesc version (=1)
String Type of column using the name of the object containing the description. It

can have one of the following values:
- ScalarColumnDesc<T
- ArrayColumnDesc<T
- ScalarRecordColumnDesc
- SubTableDesc
where T is a string defining the type. It can be: Bool, uChar, Short, uShort,
Int, uInt, Int64, float, double, Complex, DComplex, and String.

uInt BaseColumnDesc version (=1)
String column name
String comment
String default data manager type
String default data manager group
Int data type (enum from DataType.h, e.g., TpInt). It must match the type in

the column type string.
Int column options

1 = direct array; meant for small fixed sized arrays for which a storage manager
can decide to put it directly.
2 = undefined value can exist (not used).
4 = array has a fixed shape.

uInt array dimensionality (-1 means scalar)
IPosition fixed array shape (only for columns containing arrays)
uInt maximum length of a string value (0 = no maximum)
TableRecord column keyword set

For a column containing scalars

uInt ScalarColumnDesc version (=1)
T default value (stored according to the data type)

For a column containing arrays

uInt ArrayColumnDesc version (=1)
Bool dummy flag (always False); is present for backward compatibility

For a column containing records

uInt ScalarRecordColumnDesc version (=1)

For a column containing subtables

uInt SubTableDesc version (=1)
String TableDesc name
Bool Flag telling how the description of the subtable is found.

True = table description is by name, thus in a file with that name.
False = table description is in the next field.

TableDesc the description of the subtable (only if flag=False)

• A column containing records makes it possible to store arbitrary data in a column. It is
handled as an AipsIO byte stream (vector of uChar) by the data managers. No Record

10

description is kept, so the record can differ from row to row.

• A column containing subtables is supported in the description, but it has never been fully
implemented in CTDS, so it cannot be used. This feature is only used in a test program.

3.1.2 ColumnSet

The ColumnSet class contains the information how the logical table columns are mapped to their
physical counterparts served by the data managers. As part of the table.dat file it is written into
the TableDesc’s AipsIO as follows,

Data Type Description

Int version as a negative number (only for version > 1)
uInt or Int64 number of rows (Int64 for version >= 3)
Int StorageOption::Option); only for version >= 3
uInt StorageOption::blockSize; only for version >= 3
uInt highest data manager sequence number used
uInt nrdm; number of data managers used

for each data manager (nrdm entries):
string name of the data manager
uInt sequence number of the data manager (as used in f<i> in file name)

ColumnInfo[nrcol] info about each column (see below)
DMInfo[nrdm] info about each data manager (see below)

• In the first versions of CTDS the version value was not written; instead the first value written
was the number of rows (as Int). In later versions the version value was added and was
written as a negative number to distinguish it from the non-negative number of rows.

• Usually the highest data manager sequence number is the same as the number of data man-
agers used. However, if a data manager gets deleted (because all its columns are deleted),
the number of data managers decreases, but the highest sequence number does not. In this
way it is ensured that a new data manager always has a unique sequence number.

• The number of columns is not stored in ColumnSet, but is taken from the Table Description.

• For version 1 the columns are stored in order of name. For later versions they are stored in
order of time of addition.

ColumnInfo
For each column some information is stored in the ColumnSet’s AipsIO structure.

11

Data Type Description

Int version (1 or 2)
TableRecord column keywordset; only for version 1
String original column name (the name used at table creation, thus without a possible

rename)
derived column info

uInt version (1)
uInt data manager sequence number

for array columns

Bool shapeColDef; has the column a fixed shape?
IPosition the shape of each array in the column; only if shapeColDef is True

DMInfo
Each data manager can write some short information into the ColumnSet’s AipsIO structure.

This is kept as an array of bytes, stored as a length (uInt) followed by the bytes. The data manager
is responsible for the coding and decoding of these bytes.

Most data managers do not write anything, thus for them only the length 0 is stored. Only
the StandardStMan and IncrementalStMan write some info which is described in the Header
paragraphs of the respective sections.

3.2 Info file table.info

This file is a text file giving some brief info about the table. It is read and written by class
TableInfo.
It contains the following lines:

• The table type like Type = MeasurementSet

• The table subtype like SubType =

• Zero or more lines giving some more explanation.

3.3 Lock file table.lock

CTDS supports concurrent access to a table. One writer or multiple readers can be active at the
same time. A lock needs to be acquired to access the table, although there is a mode to bypass
locking when reading or to bypass locking entirely. See note 256 for more info about how locking
is done.

The first few bytes in the lock file are used by the concurrency mechanism of CTDS to manage
a read or write lock (on the entire table).

• The first byte is used to acquire/release a lock using the system’s file locking mechanism
(fcntl). The lock can be shared (for read) or exclusive (for write).

• The second byte is used to tell other processes that the table is opened. This is done by
creating a shared lock on it.

12

casacore.github.io/casacore-notes/256.html

• The third byte is used to tell other processes that a process holds a permanent lock on the
table. It is also using a shared lock.

• The fourth till sixth byte are used for special internal lock purposes.

The lock file contains two data structures to assist processes in acquiring locks and synchronizing
their internal data structures with table data changes made in another process. All data are written
in big-endian format.

• A list of process identifications is kept in the first 260 bytes of the file. Note that the first 6
bytes of that list are using to do the locking as described above. The list contains the host
id and process id of processes wanting to acquire a lock, but cannot because another process
is holding the lock.
The list consists of 4-byte integers, where the first value contains the number of processes in
the list. The other values are pairs of host id and process id, so the list can contain up to 32
processes.

• Info telling if and how table data have changed. It is written when a write lock is released.
It is used by a process acquiring a lock to synchronize its internal data objects.
The info is written as an AipsIO stream described below. Bytes 260-263 of the lock file
contain the length of the info stream. Thereafter the AipsIO stream is written.

Data Type Description

AipsIO header sync (version 1 or 2)
uInt or uInt64 number of table rows (uInt in version 1; uInt64 in version 2)
uInt number of table columns
uInt modify counter
uInt table change counter. The counter is incremented if the table.dat file has

changed (e.g. by adding a keyword).
Block<uInt> change counter per data manager. A counter is incremented if that data

manager has written data.

A process acquiring a lock detects if the main table file or a data manager file has changed by
comparing its change counters with the ones in the lock file.

3.4 Storage Managers

There are several storage managers, each writing the data in its own way. They write their data in
files called table.f<i> where <i> is the sequence number of the storage manager. The sequence
number can be seen using the program showtableinfo. As described above storage managers can
use extra files, in particular an indirect array file.

3.4.1 StandardStMan

The data of the columns bound to this storage manager are stored in equally sized buckets. The
buckets are stored sequentially in the file, so the bucket number determines the file offset. Indices
tell which rows and columns are contained in the buckets.

13

StandardStMan uses the main file table.f<i> in the table directory where <i> is the sequence
number. For indirect arrays it uses another file called table.f<i>i. The main file consists of four
types of data:

• The header is stored in the first 512 bytes of the file and describes some general properties.
It is followed by the buckets.

• The data buckets containing the fixed size data.

• String heap buckets containing variable sized strings and string arrays.

• Index buckets containing indices on the data buckets.

However, this initial simple scheme can get more complex when rows and/or columns are added
or removed. Such operations can have the effect that buckets do not contain the same number of
rows and that possibly new indices are created for groups of new columns. The storage manager
will maintain a list of free buckets in case all data from a bucket are removed.

• The addition of rows is done at the end of the last bucket. If it is full, a new bucket is
allocated and the indices are updated accordingly.

• The removal of a column is done by adding the space it took to a free space map. Since
each bucket has space for N rows, the free space is the same for each bucket. Therefore the
free space map is kept in the index. The free space map will combine adjacent free space (if
e.g. another column is removed later). When all columns stored in a bucket are removed, all
buckets occupied by these columns are added to the free bucket list.

• The addition of a column is done by looking if indices have free space (resulting from column
removal). It tries to reuse the free space that fits best. If no free space is available, a new
set of buckets is allocated for the column(s) to be added. Also a new index will be created to
describe the new set of columns and buckets.

• The removal of a row is done in the bucket(s) containing the row. It is done by shifting for
each column in that bucket the data after the deleted row to the left. It means that the offsets
of the columns in the buckets do not change. It also means that other buckets ocuupied by
these columns are not affected.

• The addition of a row in last bucket.

It is possible to remove rows, which is done by removing the row from its bucket and shifting
the other rows in that bucket. Other buckets are not touched. Therefore not all buckets need to
contain the same number of rows. An index block tells the starting row of each bucket. If all rows
of a bucket are removed, the bucket is added to the empty bucket list. An empty bucket can be
reused in a new bucket needs to be acquired when adding data to the table.

Initially all columns are combined in a single set and are stored jointly in the buckets. However,
if columns are added to a table, they do not fit in the current set of buckets. They will be stored
as a new set of columns having its own index block.

Small fixed sized data are stored directly in a data bucket. Such data are numeric scalar values
and small arrays such as UVW coordinates. Small strings (<= 8 bytes) and fixed sized strings are

14

also stored directly. Larger strings are stored in heap buckets which are referred to in the data
buckets. Strings can be span multiple heap buckets, thus it is possible to store extremely large
strings.

Header
The header block is contained in the first 512 bytes of the table.f<i> file. It contains the

following AipsIO structure.

Data Type Description

AipsIO header StandardStMan (version 1, 2, 3 or 4)
Bool data stored in big endian format? (not present for version <= 2)
uInt bucket size in bytes
uInt number of buckets
uInt Persistent cache size (in buckets)
uInt number of free buckets
Int first free bucket (-1 is no free bucket)
uInt number of index buckets
Int first index bucket
uInt offset of index in bucket (not present for version 1); if >0, index fits in a single

bucket
Int last string heap bucket (-1 is no string heap)
uInt index length (in bytes)
uInt number of indices

DMInfo
StandardStMan stores the following data manager info in the DMInfo part of the ColumnSet

AipsIO structure.

uInt[ncolumn] the number of the column set each column belongs to
uInt[ncolumn] the offset of each column in the data buckets

The number of columns is defined in the table description.

Data Buckets
The columns handled by this storage manager are grouped into sets. At table creation time there

is a single set, but sets might be added as columns are added to this storage manager at a later
stage. Similarly, sets might be removed as columns are removed. Each set of columns has its own
set of data buckets and its own index to describe the contents of the buckets.

For a particular set of columns a bucket can store N rows where N depends on the size of the
bucket and the sizes of the columns’ data types. The data are stored in a columnar way in each
bucket, thus each bucket contains N rows of column 1, thereafter N rows of column 2, etc. without
any padding. Boolean values are storeds as bits. Note that the column data types are defined in
the Table Description and not in the storage manager. The offset of a column is fixed and the
same in the data buckets is fixed. It will never change, even when rows or columns are removed. In

15

principle the first bucket contains rows 0..N, the next bucket contains rows N..2N, etc. However,
this can change as rows are deleted. Row deletion only affects the bucket the row is in.
The index defines which rows are contained in the buckets by keeping the last row number for each
bucket. The index is described in a next paragraph.

Data with a fixed length are stored directly in the data buckets, other data (variable length
strings and arrays) are stored elsewhere and referred to from the data buckets. StandardStMan
can store all scalar and array following data types supported by CTDS (as little or big endian).

Data Type Size Directly

Scalar

Bool 1 byte yes
uChar 1 byte yes
Short 1 byte yes
uShort 2 byte yes
Int 4 byte yes
uInt 4 byte yes
Int64 8 byte yes
Float 4 byte yes
Double 8 bytes yes
Complex 8 bytes yes
DComplex 16 bytes yes
String with max length maxlen bytes yes; has trailing zero if string size < maxlen
Variable string <= 8 bytes 12 bytes yes; 8 string bytes followed by Int giving length
Variable string > 8 bytes 12 bytes reference to heap bucket as Int[3] (bucketnr, offset, length)

Direct Arrays

Bool .. DComplex nelem * data type size yes; (the shape is known in the Table Description); Bool arrays are stored as bits
String 12 bytes reference to heap bucket as Int[3] (bucketnr, offset, length)

Indirect Arrays

all types 8 bytes offset in the indirect file

String Heap Buckets
These buckets contain arrays of strings and variable length scalar strings. Each bucket start with

a small header of 4 integers whereafter the string data are stored.

Data Type Description

Int reserved for the free bucket list
Int used length; the number of bytes used (including gaps), thus the next free

byte in the bucket.
Int ndeleted; the total length of the gaps arising from deletion or updating a value

with a shorter string.
Int next bucket; the bucket containing the possible continuation of the last string

(array) in this bucket. -1 means no continuation. Note that the continuation
can be continued again.

16

Strings are stored consecutevily in the buckets. A long string and an array of strings are
continued in another bucket if they do not fit entirely in the current bucket. As described above
the continuation is continued as well if it is very, very long.

It is possible in CTDS to change an existing value, thus a string (array) can be replaced by
another one. If possible the new value is written at the same location, where a gap arises if the
new value is shorter. If it is longer, it has to be stored at a new location and the old location will
be a gap. Similarly, a gap arises if a string is deleted because a row or column is deleted. Only the
total size of gaps is administered, not their locations. Thus usually gap space will be lost. Only if
it is at the end of the used part of a bucket it can be deducted from the used length and be reused.
Note that if all string space in a bucket is deleted, the bucket will be added to the free bucket list.

A string (array) is stored in the heap buckets depending on its type.

• For a scalar string only its characters are stored. Its length is already stored in the data
bucket.

• A fixed shaped array of strings is stored as a string of bytes. Each string is stored as a length-
value pair. The length is a 32-bit integer and a value is the formed by the string characters.
Note that the shape of the array is known in the table description, thus does not need to be
stored.

• A variable shaped array of string is stored in the same way as the fixed shaped array, but
is preceeded by the shape and a boolean flag. The shape is stored as an array of ndim+1

32-bit integers; the number of axes followed by the axes lengths. A True flag value indicates
that the shape is followed by string data because it is possible that the array shape is defined
independently from the writing of the actual strings.

The data bucket refers to the string (array) by means of a bucket number, offset and length. In
case of continuation that bucket number is the first bucket. The length is the total length, thus
including shape and flag if applicable.

Index Buckets
The overall index contains one or more indices, one for each set of columns. An index defines

the rows contained in the buckets used by the set of columns. This is done by keeping the last row
number per bucket. The index is needed to cope with the possibly variable number of rows in the
buckets due to removed rows.

An index also contains information about free space in the data buckets due to removed columns
because that space can possibly be reused when a column is added later. The map consists of a
std::map<Int,Int> object telling the offset and length of each free space part in a data bucket.
Note it is the same for each data bucket described by the index.

The indices to write are serialized and stored in one or more buckets. The first 8 bytes of the
index buckets contain the bucket number of the next part of the serialized indices as 2 big-endian
signed integer values. This could be done in 4 bytes, but for redundancy purposes it is done twice.
A value -1 indicates no next index bucket.

When rewriting the index, care is taken that it is done in different buckets to assure that the
index is always present in case the system crashes in the middle of writing the index. Once the
index is written successfully, the header is updated and the old index buckets are removed and

17

added to the free bucket list.
If the serialized index fits in half a bucket (which is often the case), that bucket is reused in
subsequent index rewrites by alternating between both parts of the bucket. The index offset field
in the header (see above) tells the offset of the index in the bucket.

The indices are serialized in the following AipsIO structure. Note that the number of indices is
part of the header.

Data Type Description

AipsIO header SSMIndex (version 1 or 2)
uInt Number of index entries
uInt Number of rows fitting in a bucket
Int Number of columns served by this index
std::map<Int,Int> Free space map
Block<uInt> or Block<Int64> Last row in each bucket; Int64 for version >1

Free Buckets
A bucket is added to of the free bucket list once it does not contain any data anymore. The first

free bucket is given in the header, the others form a list by maintaining the next bucket number in
the first 4 bytes of the bucket in big endian format.

Actually, a free bucket is added to the head of the list to avoid having to update the last free
bucket. Thus the current first free bucket is put at the start of the new free bucket, which in its
turn becomes the first free bucket to be stored in the header.

3.4.2 IncrementalStMan

The IncrementalStMan is meant for data that changes seldomly, so they can be stored in a com-
pressed way by storing the number of rows the data value is the same. It can be done for scalars
as well as arrays.

The storage manager cannot add nor remove columns, but it can add and remove rows. The
data structures in the files are designed for these properties.

Header
The header block is contained in the first 512 bytes of the table.f<i> file. It contains the

following AipsIO structure.

18

Data Type Description

AipsIO header IncrementalStMan (version 1, 2, 3, 4 or 5)
Bool data stored in big endian format? (not present for version <= 2=4)
uInt bucket size in bytes
uInt number of buckets
uInt Persistent cache size (in buckets)
uInt unique column number
columns added
uInt number of free buckets
Int first free bucket (-1 is no free bucket)

• The unique column number was only used by older versions (<= 2) of the IncrementalStMan.
For those older versions each indirect array column stored its data in a separate file for which
the unique column number to make the file name unique. The current version does not do
that, but uses a single file to store all indirect array column data.

DMInfo
IncrementalStMan stores the following data manager info in the DMInfo part of the ColumnSet

AipsIO structure.

uInt[ncolumn] the number of the column set each column belongs to
uInt[ncolumn] the offset of each column in the data buckets

The number of columns is defined in the table description.

Data Bucket
A data bucket contains the data of all columns for a given number of rows. It is split into a data

part (at the beginning of each bucket) and an index part (at the end of each bucket). The first 4
bytes of each bucket give the offset of the index part (thus also imply the length of the data part).
The endianness of the data and index part is the same as the endianness of the table.

Data Type Description

uInt offset of the index in this bucket. The high byte of the offset defines if row
numbers are stored as 32 or 64 bits (0 = 32 bits, 1 = 64 bits). Note that this
does not need to be the first byte, because that depends on the endianness.

byte[offset-4] the data part
byte[N] the index part as described below

Data rows can be added to a bucket until it is full, after which a new bucket is created. When
a value in a bucket gets updated, it may not fit in the bucket anymore. In that case the bucket is
split and a new bucket is created. When a row is removed, a bucket may get empty and added to
the free bucket list.
Note that this storage manager cannot remove columns.

19

Data Part
The data part contains the values of all columns bound to this storage manager. Scalars and

fixed shaped arrays of all data types (including strings) can be stored. However, a string cannot
span buckets. Variable sized arrays are stored in the indirect array file; their offsets in that file are
stored in the bucket’s data part.

All values in the data part are stored consecutively. Bool arrays are stored as bits. The index
part points to the correct data value. Note that the shape of a fixed shaped array is not stored
since it is part of the table description. The shape of a variable sized array is stored with its data
in the indirect array file.

Index Part
The bucket index defines the starting and end row of the data in a bucket. The index part in

each bucket defines per column which rows have which values. Subsequent rows can have the same
value, thus the index part defines the first and last row number in the bucket having that value. In
fact, it only defines the first row number, because the first row number of the next value defines the
last row number of this value. Note that these row numbers start at 0. The bucket index defines
the actual row number; it also defines the last row number of the last value.

The index part contains per column the following information. It is stored consecutively for all
columns.

Data Type Description

uInt number of values
uInt or Int64[nr] first row number in bucket having the corresponding value. It starts at 0.
uInt[nr] offset in data part for value given by the row number

• The row numbers are given relatively to the first row in the bucket. Thus if a bucket contains
rows N till N+M, the values of the row numbers in the index part of that bucket is between
0 and M.

• The row numbers are stored as a 32-bit or 64-bit integers which depends on the highest
(relative) row number in the bucket. The high byte in the offset value at the beginning of the
bucket tells if it is 32 or 64 bits.
Note that until 2018 Casacore stored the row numbers always as 32 bits. The new way of
storing them as 32 or 64 bits is fully backwards compatible since the high byte of the offset
was always 0.

Bucket Index
The bucket index defines which rows are contained in each bucket. It is written at the end of the

file, thus right after the last bucket, as an AipsIO structure with the following fields.

Data Type Description

AipsIO header ISMIndex (version 1 or 2)
uInt number of buckets
uInt or Int64[nr+1] first row number in each bucket

20

• Version 1 is used if row numbers are stored as 32-bit integers, version 2 is used for 64-bit
integers. The highest row number determines how they are stored.

• The last row number stored is the number of rows + 1; it can be seen as the first row number
if a next bucket.

Free Buckets
A bucket is added to of the free bucket list once it does not contain any data anymore. The first

free bucket is given in the header, the others form a list by maintaining the next bucket number in
the first 4 bytes of the bucket in big endian format.

Actually, a free bucket is added to the head of the list to avoid having to update the last free
bucket. Thus the current first free bucket is put (as the next free bucket) at the start of the new
free bucket, which in its turn becomes the first free bucket to be stored in the header.

3.4.3 TiledStMan

The Tiled Storage Manager stores the data in a tiled way to achieve that access along the different
axes is about equally fast. It is similar to the chunked storage of data arrays in HDF5. This storage
manager can only be used for columns containing array with a fixed sized data type, thus scalar
columns and string array columns cannot be stored. There are a few flavours.

• TiledColumnStMan

• TiledShapeStMan

• TiledCellStMan

• TiledDataStMan is obsolete.

- index - cell, column, shape stman

3.4.4 AipsIOStMan

3.4.5 Indirect Array File

Variable shaped arrays cannot be stored directly in most storage managers. Instead they are stored
in a separate file. The offset in that file is stored by the storage managers.

21

3.5 Virtual Column Engines

3.5.1 ForwardColumnEngine

3.5.2 ScaledComplex

3.5.3 VirtualTaQLColumn

4 RefTable

5 ConcatTable

6 MultiFile Format

The MultiFile format has been designed to reduce the number of files. CTDS uses one or more
files per storage manager which can result in quite a large number of files for a table. In particular
a MeasurementSet and its subtables can consist of dozens of files. Often these files are quite small
mapping poorly to more modern file systems such as Lustre, which use large IO blocks.
The MultiFile format has been designed to combine all these files into a single container file.
Furthermore, MultiFile has the option to store a CRC value for each block to ensure data are read
back correctly.

The MultiFile format comes in 2 flavours:
1. The MultiFile which is a regular file with an header to denote all individual files in it.
2. The MultiHDF5 which is an HDF5 file containing a dataset per individual file.
They are described in more detail below.

6.1 MultiFile

A MultiFile is a binary file divided into (large) blocks of equal size. Each CTDS file is stored as
a virtual file in one or more blocks in the MultiFIle. A header describes the MultiFile layout and
the virtual files. It contains an index telling the name of the CTDS files and the block numbers
containing their data. The header also contains a list of free blocks which arise when a CTDS file
is deleted or truncated.

The MultiFile concept has evolved over time. The second version is more powerful and more
robust than the first version. In both versions the header is maintained in memory and occasionally
flushed to disk. It makes use of the AipsIO mechanism to serialize the header and to store it in the
first block of the MultiFile. Continuation blocks are used if it is too large for a single block.

6.1.1 MultiFile version 1

Version 1 of the MultiFile can contain the files of a single CTDS table. It does not support nested
MultiFiles as version 2 does. Neither does it support CRC values. Header continuation blocks are
not stored in the MultiFile itself, but in a small separate file with the extra extension hdrext in
its file name.
The header is stored as follows:

22

Data Type Description

Int64 header size in bytes
Int64 block size in bytes
Int64 counter keeping track how often the header was written. It is used to know if

changes have been made by another process requiring the header to be reread.
AipsIO AipsIO structure containing the entire MultiFile index

The MultiFile index is serialized in the following AipsIO structure.

Data Type Description

AipsIO header MultiFile (version 1)
Int64 Total number of blocks used in the MultiFile (including free blocks)
C-array of FileInfo Vector of objects containing the info of each CTDS file in the MultiFile
C-array of Int64 Vector of free blocks

Each FileInfo entry contains:

Data Type Description

String CTDS file name
C-array of Int64 Vector of MultiFile block numbers used for this CTDS file
Int64 Total size in bytes of the CTDS file

6.1.2 MultiFile version 2

Version 2 of the MultiFile can contain multiple CTDS files (as version 1 does), but it also supports
nested MultiFiles. Nested MultiFiles are used to store subtables in the MultiFile of the parent
table to achieve that an entire MeasurementSet is stored in a single file. A nested MultiFile is the
same as any other MultiFile, thus having its own header, index, block size, etc. It is stored as a
single file in the parent MultiFile. However, a nested MultiFile does not have CRC values.
The header is stored as follows:

23

Offset Data Type Description

0 Int64 0 (to make it different from version 1)
8 Int64 blocknr of first continuation header block (0 = no continuation)

16 Int64 counter keeping track how often the header was written. It is used to
know if changes have been made by another process requiring the header
to be reread.

24 Int32 version (=2)
28 uInt32 CRC of entire header (using 0 for this CRC value)
32 Int64 header size in bytes
40 Int64 block size in bytes
48 Int64 Total number of blocks used in the MultiFile
56 char use CRC?
57 char[7] spare
64 AipsIO AipsIO structure containing the MultiFile index

nfile*FileInfo general info per file
nfile*Index packed index per file
Index packed index of free blocks
Int64 nCRC (0 if CRCs are not used)
nCRC*uInt32 CRC value per block
Int64 number of available blocks of first header continuation
n*Int64 block numbers available for first header continuation
Int64 number of available blocks of second header continuation
n*Int64 block numbers available for second header continuation
2*Int64 number of block actually used for first and second continuation

There are two header continuation blocks to improve robustness. They are used alternately
when the header is flushed to disk. The first block (at offset 0 of the file) it written last. This
ensures there is always a valid header in case of a crash. Note that new continuation blocks are
added as needed. When added, the header is serialized again to contain those new block numbers.
In case fewer continuation blocks are needed than there are available, the superfluous blocks are
not added to the free list but are kept available.
The MultiFile index is serialized in the following AipsIO structure.

Data Type Description

AipsIO header MultiFile (version 1)
C-array of FileInfo Vector of objects containing the info of each CTDS file in the MultiFile

Each FileInfo entry looks as:

Data Type Description

String CTDS file name
Int64 Total size in bytes of the CTDS file
Bool Is this file a nested MultiFile?

A packed index is a compressed form of the index telling which blocks are used by a file. It is

24

compressed by storing a repeat count for consecutive block numbers. The repeat count is a negative
value to make it different from the block numbers. For example:

10,-3,17 means block 10,11,12,17

6.2 MultiHDF5

25

	Introduction
	AipsIO
	Array object
	IPosition object
	Block and std::vector object
	std::map object
	TableRecord object

	PlainTable
	General file table.dat
	Table Description
	ColumnSet

	Info file table.info
	Lock file table.lock
	Storage Managers
	StandardStMan
	IncrementalStMan
	TiledStMan
	AipsIOStMan
	Indirect Array File

	Virtual Column Engines
	ForwardColumnEngine
	ScaledComplex
	VirtualTaQLColumn

	RefTable
	ConcatTable
	MultiFile Format
	MultiFile
	MultiFile version 1
	MultiFile version 2

	MultiHDF5

