
NOTE 199 – Table Query Language

Ger van Diepen, ASTRON Dwingeloo

2022 Dec 20

Abstract

The Table Query Language (TaQL) is an SQL-like high level language to do operations like
selection, sort, update and other modifications of a casacore table. It is a very versatile language
with full support for table columns containing array data. It has inherent support for masked
arrays, units, and astronomical coordinates. It has a very rich set of functions (such as cone search
and array reduction) making it very suitable for astronomical applications. User defined functions
can be added easily. It also has full support of equi-join, grouping/aggregation and nested queries.
An operation that can be expressed in a single command is the matching of two sky catalogues.
It can be used from C++, Python, and the Casacore program taql.

1.0 1997 Feb 9 Original version
2.0 2010 Nov 5 UPDATE, INSERT, DELETE and COUNT commands
3.0 2015 Jul 29 GROUPBY and HAVING clause
3.1 2016 Apr 4 Masked arrays; ALTER TABLE and SHOW commands
3.2 2018 Feb 14 WITH clause
3.3 2018 Jun 10 Meas support for frequency, doppler, radialvelocity, earthmagnetic
3.4 2022 Jan 25 LIKE clause in table or column creation, COPY COLUMN and DROP TABLE
3.5 2022 Sep 20 AROUND/IN intervals
3.6 2022 Dec 20 JOIN clause

Contents

1 Introduction 5
1.1 TaQL vs SQL . 5

2 TaQL Commands 6
2.1 Command summary . 6
2.2 Using a style . 9

2.2.1 UDF library synonyms . 9
2.2.2 Tracing . 10
2.2.3 Timing . 10

2.3 Reserved words . 10

3 Making of a selection from a table 11
3.1 Selection from a table . 11

3.1.1 Column/keyword lookup . 12
3.2 WITH table list . 13
3.3 SELECT column list . 13

3.3.1 Wildcarded SELECT columns . 14

1

3.3.2 Expressions in SELECT column list . 14
3.3.3 Masked array in column list . 15

3.4 INTO [table] [AS options] . 15
3.5 FROM table list . 17
3.6 Joining tables . 20

3.6.1 JOIN clause . 20
3.6.2 Join on row number . 21
3.6.3 Join using an indexed subquery . 22
3.6.4 Join using a subquery set . 22
3.6.5 Join using derivedmscal . 22

3.7 WHERE expression . 22
3.8 GROUPBY group list . 22
3.9 HAVING expression . 23
3.10 ORDERBY sort list . 23
3.11 LIMIT/OFFSET expression . 23
3.12 GIVING [table] [AS options] — set . 24

4 Expressions 24
4.1 Data Types . 25
4.2 Regular Expressions and String Distances . 26
4.3 Constants . 28

4.3.1 Bool . 28
4.3.2 Integer . 28
4.3.3 Double (and time/position) . 28
4.3.4 Complex . 29
4.3.5 String . 29
4.3.6 Regular expression and String distance . 29
4.3.7 Date/time . 30
4.3.8 Arrays . 31
4.3.9 Masked Arrays . 32
4.3.10 Null Arrays . 32

4.4 Table Columns . 33
4.4.1 Referring to SELECT columns . 33

4.5 Table Keywords . 33
4.6 Operators . 34
4.7 Sets and intervals . 36
4.8 Array Index Operator . 37
4.9 Units . 38
4.10 Functions . 41

4.10.1 String functions . 41
4.10.2 Regex functions . 42
4.10.3 Date/time functions . 43
4.10.4 Pretty printing functions . 44
4.10.5 Comparison functions . 46
4.10.6 Mathematical functions . 46
4.10.7 Array to scalar reduce functions . 48
4.10.8 Array to array reduce functions . 49
4.10.9 Array downsampling functions . 50

2

4.10.10 Array functions operating in running windows 52
4.10.11 Type conversion functions . 53
4.10.12 Array creation functions . 54
4.10.13 Aggregate functions . 55
4.10.14 Miscellaneous functions . 58
4.10.15 Cone search functions . 59
4.10.16 User defined functions . 61
4.10.17 Special MeasurementSet functions . 62
4.10.18 Special Measures functions . 66

4.11 Subqueries . 74

5 Aggregation, GROUPBY, HAVING 76
5.1 Aggregation and GROUPBY . 76
5.2 HAVING . 77

6 Some further remarks 77
6.1 Optimization . 77

7 Modifying a table 79
7.1 UPDATE . 79

7.1.1 Partial Array Update . 80
7.1.2 Update columns from a masked array . 81

7.2 INSERT . 81
7.3 DELETE . 82

8 Creating a new table 82
8.1 Column specification . 83
8.2 Data manager specification . 84

9 Removing a new table 85

10 Modifying the table structure 85
10.1 ADD COLUMN . 85
10.2 COPY COLUMN . 86
10.3 RENAME COLUMN . 86
10.4 DELETE COLUMN . 86
10.5 SET KEYWORD . 86
10.6 COPY KEYWORD . 87
10.7 RENAME KEYWORD . 88
10.8 DELETE KEYWORD . 88
10.9 ADD ROW . 88

11 Counting in a table 88

12 Calculations on a table 89

3

13 Examples 89
13.1 Selection examples . 89

13.1.1 Reference table results . 89
13.1.2 Plain table results . 92

13.2 Modification examples . 92
13.2.1 Applying running median to an image . 93

13.3 Table creation examples . 93
13.4 Calculation examples . 94
13.5 Aggregation/groupby examples . 94

13.5.1 Obtaining the flux density from visibility data 95
13.5.2 Number of fully flagged baselines per antenna 95

14 Interface to TaQL 97
14.1 Python interface python-casacore . 97
14.2 Interface to Glish . 98
14.3 Program taql . 98
14.4 C++ interface . 101

14.4.1 TaQL query string . 101
14.4.2 Expression string . 101
14.4.3 Expression classes . 102

15 Writing user defined functions 102
15.1 UDFs in Python . 103

16 Possible future developments 105

4

1 Introduction

The Table Query Language (TaQL, rhymes with bagel (though some people pronounce it as tackle))
is a language for querying and manipulating data in Casacore tables. It makes it possible to get
information from the data content in the columns and keywords of arbitrary tables. It supports
arbitrary complex expressions including units, extended regular expressions, and many functions.
User defined functions written in C++ are supported, which is used to support coordinate conversions
in TaQL. TaQL also makes sorting and column selection possible. Furthermore, TaQL has commands
to update, add or delete rows, columns and keywords in a table and to create, restructure or delete a
table.

The first sections of this document explain the syntax and show the options. The last sections give
several examples and show the interface to TaQL using C++ or the program taql.

1.1 TaQL vs SQL

TaQL is modeled after SQL and contains a subset of SQL’s functionality. Some familiarity with SQL
makes it easier to understand the TaQL syntax. The most important features of TaQL different from
SQL are:

• The result of a SELECT is another table (either temporary or persistent). Usually this is a
so-called reference table, but it is also possible to make a deep copy and create a plain table.
A reference table is a table that can be used as any other table, but does not contain data.
Instead it contains references to the rows and columns in the original table. Thus modifying
data in a reference table means that effectively the data in the original table are modified.

• A very rich set of mathematical and other functions.

• Any operand can be a scalar or an N-dimensional array. Many reduce functions can be applied
to arrays.

• Arrays can optionally be masked.

• Full support of units and automatic conversion of units.

• Support of various types of patterns/regular expressions and support of maximum string distance
(Levensthein (aka Edit) distance).

• Specific operators and functions for cone searching (i.e., spatial searching with a search radius).

• An advanced way of specifying intervals.

• Many aggregate functions that can be used with GROUPBY.

• No support of indices, thus a linear table search is done. Because data are stored column-wise,
a linear search is usually very fast, even for very large tables.

• Only support for left joins with a single match. Multiple tables in a clause are not fully joined
(as SQL does), but joined on rowid. Hence they must have the same size.

• The COUNT command exists to count the occurrences of column values. Although it can still
be used, this command is obsolete now GROUPBY is fully supported.

5

• The CALC command exists to calculate an arbitrary expression (including subqueries) on a
table. This can be useful to derive values from a table (e.g., the number of flags set in a
measurement set). It can even be used as a desk calculator.

• TaQL can be used from languages with different conventions, for example the order of array
axes. Therefore it is possible to set the language style to be used.

• The language can be extended by means of User Defined Functions. Some standard UDFs exist
to deal with MeasurementSets and to do measure conversions (for direction, epoch, position,
stokes, frequency, doppler, radialvelocity and earthmagnetic).

• In the WITH clause the order of the table and alias is reversed compared to SQL. In this way
they have the same order as the table specifications in the FROM clause.

TaQL has a keyword that makes it possible to time the various parts of a TaQL command.

2 TaQL Commands

2.1 Command summary

A command can be followed by a semicolon and/or a comment, indicated by a leading hash-sign.
They are ignored. For example:

calc sin(pi()); # calculate sine of pi

The available TaQL commands are shown below. The square brackets are not part of the syntax,
but indicate the optional parts of the commands.

• show (or help)

SHOW [type ...]

can be used to give some TaQL explanation or to show table information. A sole show command
shows the possible options. HELP is a synonym for SHOW.

• selection

SELECT [[DISTINCT] expression_list]

[INTO table [AS options]]

[FROM table_list]

[JOIN table_list ON expression [JOIN table_list ON expression ...]]

[WHERE expression]

[GROUPBY expression_list]

[HAVING expression]

[ORDERBY [DISTINCT] sort_list]

[LIMIT expression] [OFFSET expression]

[GIVING table [AS options] | set]

[DMINFO datamanagers]

It can be used to get an optionally sorted subset from a table. It can also be used to do a
subquery (see section 4.11 for more information on subqueries).

6

• updating

UPDATE table_list SET update_list [FROM table_list]

[WHERE ...] [ORDERBY ...] [LIMIT ...] [OFFSET ...]

It can be used to update data in (a subset of) the first table in the first table list.

• row addition

INSERT INTO table_list SET column=expr, column=expr, ...

or

INSERT INTO table_list [(column_list)]

VALUES (expr_list),(expr_list),... [LIMIT n]

or

INSERT INTO table_list [(column_list)] SELECT_command

It can be used to add and fill new rows in the first table in the table list.

• row deletion

DELETE FROM table_list

[WHERE ...] [ORDERBY ...] [LIMIT ...] [OFFSET ...]

It can be used to delete some or all rows from the first table in the table list.

• counting

COUNT [column_list] FROM table_list [WHERE ...]

It can be used to count occurrences of column values. Although the command can still be used,
it is basically obsolete because the same (and more) can be achieved with the GROUPBY clause
and aggregate functions in the SELECT command.
Furthermore, usually GROUPBY is faster.

• calculation

CALC expression [FROM table_list]

It can be used to calculate an expression, in which columns in a table can be used. It returns a
list of values instead of a table.

• table creation

CREATE TABLE table [AS options]

[LIKE table [DROP COLUMN column_list]]

[[ADD COLUMN] column_specs]

[LIMIT ...]

[DMINFO datamanagers]

It can be used to create a new table with the given columns and number of rows. Optionally
specific table and data manager info can be given.

7

• table removal

DROP TABLE table-list

It can be used to drop (delete) one or more tables.

• table structure modification

ALTER TABLE table

[ADD COLUMN [column_specs] [DMINFO datamanagers]]

[COPY COLUMN colnew=col, colnew=col, ... [DMINFO datamanagers]]

[RENAME COLUMN column_pair_list]

[DROP COLUMN column_list]

[SET KEYWORD key=value, key=value, ...]

[COPY KEYWORD key=other, key=other, ...]

[RENAME KEYWORD keyword_pair_list]

[DROP KEYWORD keyword_list]

[ADD ROW nrow]

The subcommands of the ALTER TABLE command can be used to

– add, copy, rename, and remove columns and keywords

– add rows (that have to be filled later)

Multiple such subcommands can be given, separated by white space.

The SELECT, COUNT, CREATE TABLE and ALTER TABLE commands can be used as a table
in another command making it possible to directly use the resulting table. The following example
creates a table (with column NAME) and puts values into the column.

INSERT INTO [CREATE TABLE a.tab [NAME string]]

VALUES (’name1’), (’name2’)

All TaQL commands, except SHOW, can be preceded by the clause

WITH table_list

which can be used to create one or more temporary tables to be used in the subsequent clauses. Section
3.2 contains a detailed description of this clause.

The clauses and verbs in the commands are case-insensitive, but case is important in string values
and in names of columns and keywords. Whitespace (blanks and tabs) can be used at will. The HELP
command can be used to obtain brief information about each command and the available functions.
The SELECT command is fully explained in Section 3.1 (Making a selection from a table)
The UPDATE, INSERT and DELETE commands are explained in Section 7 (Modifying a table)
The CREATE TABLE command is explained in section 8 (Creating a table)
The DROP TABLE command is explained in section 9 (Removing a table)
The ALTER TABLE command is explained in section 10 (Modifying the table structure).
The CALC command is explained in Section 12 (Calculations on a table)
The COUNT command is explained in Section 11 (Counting in a table)

8

2.2 Using a style

TaQL can be used from different languages, in particular Python and Glish. Each has its own con-
ventions breaking down into three important categories:

• 0-based or 1-based indexing.

• Fortran-order or C-order of arrays.

• Inclusive or exclusive end in start:end ranges.

The user can set the style (convention) to be used by preceding a TaQL statement with

USING STYLE value, value, ...

The possible (case-independent) values are:

• BASE0 or BASE1 telling the indexing style.

• ENDEXCL or ENDINCL telling the range style.

• CORDER or FORTRANORDER telling the array style.

• PYTHON which is equivalent to BASE0,ENDEXCL,CORDER

• GLISH which is equivalent to BASE1,ENDINCL,FORTRANORDER

The following values are also possible and are described in the next subsections.

• synonym=libname to define a synonym for a user defined library.

• TRACE or NOTRACE to (un)set tracing.

• TIME or NOTIME to (un)set timing.

If multiple values are given for a category, the last one will be used. The default style used is GLISH,
which is the way TaQL always worked before this feature was introduced.

It is important to note that the interpretation of the axes numbers depends on the style being
used. e.g., when using glish style, axes numbers are 1-based and in Fortran order, thus axis 1 is the
most rapidly varying axis. When using python style, axis 0 is the most slowly varying axis.
Casacore arrays are in Fortran order, but TaQL maps them to the style being used. Thus when using
python style, the axes will be reversed (data will not be transposed). Note: unless said differently,
all examples in this document are done using the Python style.

The style feature has to be used with care. A given TaQL statement will behave differently if used
with another style.

2.2.1 UDF library synonyms

The style clause can also be used to define synonyms for the library names of user defined functions.
For example:

using style mscal=derivedmscal

defines the synonym mscal. Synonyms make it easier (i.e., less typing) to specify user defined functions.
Note that the synonym in the example above is automatically defined by TaQL as well as the synonym
py for pytaql.

9

2.2.2 Tracing

It is possible to get some tracing output during the execution of a TaQL command by using the
case-insensitive value TRACE in the using style clause. It can be useful for debugging purposes.

2.2.3 Timing

It is possible to time a TaQL command by using the case-insensitive value TIME in the using style

clause. For historical reasons it is also possible to use the the case-insensitive keyword TIME before or
after the optional style clause.

Timing shows the total execution time and the times needed for various parts of the TaQL command
on stdout. For example:

time select distinct ANTENNA1,ANTENNA2

from ~/3C343.MS where any(FLAG)’

Where 2.87 real 2.16 user 0.69 system

Projection 0 real 0 user 0 system

Distinct 0.18 real 0.16 user 0.03 system

Total time 3.07 real 2.33 user 0.72 system

shows the time to do the where part (i.e., row selection on FLAG), projection (selection of columns),
and distinct (unique column values).

2.3 Reserved words

TaQL uses the following reserved words as part of its language.

ALL AND AROUND AS ASC

BETWEEN

CALC CREATETABLE

DELETE DESC DISTINCT DMINFO

EXCEPT EXISTS

F FALSE FROM

GIVING GROUPBY GROUPBYROLLUP

HAVING

ILIKE IN INCONE INSERT INTERSECT INTO

JOIN

LIKE LIMIT

MINUS

NODUPLICATES NOT

OFFSET ON OR ORDERBY

SAVETO SELECT SET SUBTABLES

T TO TOP TRUE

UNION UNIQUE UPDATE USINGSTYLE

VALUES

WHERE WITH

XOR

Furthermore, some word combinations are reserved.

10

ADDCOLUMN ADDROW

COPYCOLUMN COPYKEYWORD

DELETECOLUMN DELETEKEYWORD

DROPCOLUMN DROPKEYWORD DROPTABLE

RENAMECOLUMN RENAMEKEYWORD

SETKEYWORD

Note that the words in the TaQL vocabulary are case insensitive, thus the lowercase (or any mixed
case) versions are also reserved.

The reserved words cannot directly be used as column name, keyword name, or unit. However, a
reserved word can be used that way by escaping it with a backslash like \AS. When reading further,
the meaning of

\IN \in IN [3mm,4mm]

column unit IN set

might become clear. It means: use unit in (inch) for column IN and test if it is in the given set.
Note this is unlike SQL where quotes have to be used to use a reserved word as a column name.

3 Making of a selection from a table

The SELECT is the main TaQL command. It can be used to select a subset of rows and/or columns
from a table and to generate new columns based on expressions.

As explained above, the result of a selection is usually a reference table. This table can be used
as any other table, thus it is possible to do another selection on it or to update it (which updates the
selected rows in the underlying original table). It is, however, not possible to insert rows in a reference
table or to delete rows from it.

If the select column list contains expressions, it is not possible to generate a reference table. Instead
a normal plain table is generated (which can take some time if it contains large data arrays). It should
be clear that updating such a table does not update the original table.

The FROM clause can be omitted from the select. In that case no columns can be used in the
selection, but functions like rand and rowid make variable output possible. Clauses like ORDERBY
can be given. The GIVING (or INTO) might be useful to store the result in a table.

The JOIN clause can be used to left join a table with another table. It also is possible to join
tables on row number, where the tables involved must have the same number of rows. One can also
join on row number the main table of a MeasurementSet with a subtable such as the ANTENNA table
using a subquery. Joins are explained further in section 3.6.

3.1 Selection from a table

The SELECT command consists of various clauses of which most are optional. The full command
looks as follows where the optional parts are shown in square brackets.

[WITH table_list]

SELECT [[DISTINCT] column_list]

[INTO table [AS options]]

[FROM table_list]

[JOIN table_list ON condition [JOIN table_list ON condition ...]]

[WHERE expression]

[GROUPBY expression_list]

11

[HAVING expression]

[ORDERBY [DISTINCT] sort_list]

[LIMIT expression] [OFFSET expression]

[GIVING table [AS options] | set]

[DMINFO datamanagers]

The clauses are executed in a somewhat different order.

1. WITH to create the temporary tables to be used.

2. FROM to define the main tables to be used.

3. JOIN to combine main tables with other tables.

4. WHERE to select the rows.

5. GROUPBY to group selected rows.

6. SELECT to fill select columns used in HAVING or ORDERBY.

7. HAVING to select groups.

8. SELECT to fill the remaining select columns.

9. ORDERBY to sort the result.

10. LIMIT (or TOP) and OFFSET to ignore entries in the sorted result.

11. DMINFO to define the data managers to be used if the result is stored in a plain table.

12. GIVING/INTO to write the final result, possibly stored in a plain table. See section 8.2 how to
specify them.

All clauses are explained in full detail in the subsequent sections.

3.1.1 Column/keyword lookup

Expressions in the various clauses will normally use column names to select, sort, or group a table.
It is also possible to use table keywords or column keywords by giving their names. Furthermore, it
is possible to use a column, created in the SELECT clause, in the HAVING and ORDERBY clauses.
This can save time in both specifying and executing the command, because a possibly complicated
expression can be used to create such a column. If such columns are used, that part of the SELECT
is executed before HAVING.

TaQL uses the following lookup scheme for column/keyword names.

1. If preceded by a shorthand (like in t0.DATA), the name is looked up in the corresponding table
given in the FROM or JOIN clause.

2. If not preceded by a shorthand, a name is first looked up in the select columns. If not found,
the name is looked up in the first table given in FROM.

3. A name is first looked up as a column in a table. If not found, it is looked up as a table keyword.

See the discussion of column names and keyword names for more details.

12

3.2 WITH table list

Sometimes it is useful to create a temporary table to be used in a SELECT command (or another
TaQL command) containing subqueries. It can make the command more clear or it can optimize the
command by factoring out subqueries that are used multiple times. For example:

with [select ANTENNA1,ANTENNA2,gntrue(FLAG) as NFLAG

from 3C343.MS

where ANTENNA1!=ANTENNA2

groupby ANTENNA1,ANTENNA2] as t1

select STATION,gsum(NFLAG)

from [[select NFLAG,ANTENNA1 as ANTENNA from t1],

[select NFLAG,ANTENNA2 as ANTENNA from t1]]

groupby ANTENNA orderby ANTENNA]

This command counts the number of flagged visibilities per antenna. It looks somewhat complicated
and can only be fully understood once the entire TaQL note has been read.
The important thing is that the WITH command creates a small temporary table containing the
number of flagged visibilities per baseline. It is used twice in the subsequent SELECT command (by
concatenation). First for ANTENNA1, thereafter ANTENNA2. The above query command is about
twice as fast as something like

select ANTENNA,gntrue(FLAG)

from [[select FLAG,ANTENNA1 as ANTENNA from 3C343.MS

where ANTENNA1!=ANTENNA2],

[select FLAG,ANTENNA2 as ANTENNA from 3C343.MS

where ANTENNA1!=ANTENNA2]]

groupby ANTENNA orderby ANTENNA

because it processes all flags in the MeasurementSet only once instead of twice.
It is important to note that, unlike the SQL WITH clause, the order is ’WITH table AS alias’.

This is the same order as used in the FROM clause.
Another property is that WITH is nestable, thus can be used in a nested query.

3.3 SELECT column list

Columns to be selected can be given as a comma-separated list with names of columns that have to be
selected from the tables in the table list (see below). If no column list is given, all columns of the first
table will be selected. A selection results in a so-called reference table. Optionally a selected column
can be given another name in the reference table using AS name (where AS is optional). For example:

select TIME,ANTENNA1,ANTENNA2,DATA from 3C343.MS

select TIME,ANTENNA1,ANTENNA2,MODEL_DATA AS DATA from 3C343.MS

It is possible to precede a column name with a table shorthand indicating which table in the FROM
or JOIN clause has to be used. If not given, a column will be looked up in the first FROM table. Note
that if equally named columns from different tables are used, one has to get a new name, otherwise a
’duplicate name’ error will occur. For example:

select t0.DATA, t1.DATA as DATA1 from 3C343.MS t0, 3C343_1.MS t1

13

3.3.1 Wildcarded SELECT columns

Apart from giving exact column names, it is also possible to use wildcards by means of a UNIX
filename-like pattern (p/pattern/) or a regular expression (as f/regex/ for a full match or m/regex/
for a partial match). They can be suffixed with an i indicating case-insensitive matching. See
section 4.3.6 for a discussion of these constants. An operator has to be given before the pattern
or regex. Operator ~ means inclusion of the matching columns. Operator !~ means exclusion of the
matching columns included so far by means of a pattern or regex since the last explicit column name
or expression.
A special pattern is * (which is the same as p/*/). If !~ is used at the first pattern or regex, it is
assumed that all columns are included (as if * was given before).
The pattern or regex (except *) can be preceded by a table shorthand denoting that the columns have
to be taken from that table. For example:

select *, !~p/*_DATA/ from 3C343.MS

select !~p/*_DATA/ from 3C343.MS # * is assumed first

select !~p/t1.*_DATA/ from 3C343.MS t1 # with shorthand t1

selects all columns except the ones ending in DATA.

select ~m/DATA/, !~p/*_DATA/ from 3C343.MS

selects columns with a name containing DATA except the ones ending in DATA.

select CORRECTED_DATA, *, !~p/*_DATA/ from 3C343.MS

or

select *, !~p/*_DATA/, CORRECTED_DATA from 3C343.MS

does select the CORRECTED DATA column (in the first case because it is explicitly selected).
Note it is not possible to change the name or data type of wildcarded columns.

3.3.2 Expressions in SELECT column list

It is also possible to use expressions in the column list to create new columns based on the contents of
other columns. When doing this, the resulting table is a plain table (because a reference table cannot
contain expressions). The new column can be given a name by giving AS name after the expression
(where AS is optional). If no name is given, a unique name like Col 1 is constructed. After the name
a data type string can be given for the new column. If no data type is given, the expression data type
is used.

select max(ANTENNA1,ANTENNA2) AS ANTENNA from 3C343

select means(DATA,1) from 3C343

Note that unit conversion can be (part of) an expression. For example:

select TIME d AS TIMEH from my.ms

to store the time in unit d (days). Units are discussed in section 4.9.
It is possible to change the data type of a column by specifying a data type (see below) after the

new column name. Giving a data type (even if the same as the existing one) counts as an expression,
thus results in the generation of a plain table. For example:

select MODEL_DATA AS DATA FCOMPLEX from 3C343.MS

14

Note that for subqueries the GIVING clause offers a better (faster) way of specifying a result
expression. It also makes it possible to use intervals.

Special aggregate functions (e.g., gmin) exist to calculate an aggregated value (minimum in this
example) per group of rows where the grouping is defined by the GROUPBY clause. The entire
column is a single group if no GROUPBY is given. Aggregation is discussed in more detail in section
5.

If a column list is given and if all columns (and/or expressions) are scalars, the column list can
be preceded by the word DISTINCT. It means that the result is made unique by removing the
rows with duplicate values in the columns of the column list. Instead of DISTINCT the synonym
NODUPLICATES or UNIQUE can also be used. To find duplicate values, some temporary sorting is
done, but the original order of the remaining rows is not changed.
Note that support of this keyword is mainly done for SQL compliance. The same (and more) can be
achieved with the DISTINCT keyword in the ORDERBY clause with the difference that ORDERBY
DISTINCT will change the order.
For full SQL compliance it is also possible to give the keyword ALL which is the opposite of DISTINCT,
thus all values are returned. This is the default. Because there is an ambiguity between the keyword
ALL and function ALL, the first element of the column list cannot be an expression starting with a
parenthesis if the keyword ALL is used.

3.3.3 Masked array in column list

If an expression in the column list is a masked array, it is possible to create two columns from it: one
for the data, one for the mask. This can be done by combining them in parentheses like (DATA,MASK).
A possible data type given after the column names only applies to the data column, since the mask
column always has data type Bool. For example:

select means(DATA[FLAG],0) as (MD,MM) C4 from in.ms giving out.tab

The select results in a masked array containing the means along axis 0. Both column MD and MM
are filled with the contents of the masked array. MD (with data type C4) contains the means over the
first axis of the unmasked elements; MM contains the resulting mask.

3.4 INTO [table] [AS options]

This indicates that the ultimate result of the SELECT command should be written to a table (with
the given name). This table can be a reference table, a plain table, or a memory table. It can also be
a subtable of an existing table using the :: notation. For example:

INTO my.tab::SUBTAB

creates subtable SUBTAB in parent table ’my.tab’. It also defines the keyword SUBTAB in the parent
table to refer to the subtable.

The table argument gives the name of the resulting table. It can be omitted if a memory table is
created.

The options argument is optional and can be a single value or a list, enclosed in square brackets,
consisting of values and key=value. They can be used to specify the table and storage type. All keys
and values are case-insensitive.

TYPE=’value’ specifies the table type.
PLAIN = make a persistent table, thus a true copy of all selected rows/columns.
SCRATCH = as plain, but only as a temporary table.

15

MEMORY = as plain, but keep everything in memory.
If TYPE is not given, a reference table is made if no expressions are given in the SELECT clause,
otherwise a plain table is made.

ENDIAN=’value’ specifies the endianness
BIG = big endian
LITTLE = little endian
LOCAL = native endianness of the machine being used
AIPSRC = as defined in the .casarc file (which usually defaults to LOCAL)
If ENDIAN is not given, it defaults to AIPSRC.

STORAGE=’value’ specifies the storage type
SEPFILE = store as separate files (the old Casacore table format)
MULTIFILE = combine all storage manager files into a single file.
MULTIHDF5 = as MULTIFILE, but use an HDF5 file instead of a regular file.
DEFAULT = use SEPFILE (but might change in a future Casacore version),
AIPSRC = as defined in the .casarc file (which usually defaults to DEFAULT)
If STORAGE is not given, it defaults to AIPSRC.

BLOCKSIZE=n specifies the blocksize to use for MULTIFILE or MULTIHDF5.

OVERWRITE=F tells that an existing table with the given name should not be overwritten. By
default TaQL will overwrite existing tables.

For backward compatibility, it is possible to specify an option directly without having to use ’key=value’.

MEMORY to store the result in a memory table.

SCRATCH to store the result in a scratch table, possibly on disk.

PLAIN to store the result in a plain table.

PLAIN BIG to store the result in a plain table in big-endian format.

PLAIN LITTLE to store the result in a plain table in little-endian format.

PLAIN LOCAL to store the result in a plain table in native endian format.

The standard TaQL way to define the output table is the GIVING clause. INTO is available for SQL
compliance.

If the INTO (or GIVING) clause is not given, the query result will be written into a memory table.
In this way queries done in a readonly directory will not fail if a result table cannot created. However,
if the result is expected to not fit in memory (which will seldomly be the case), type SCRATCH should
be used to make it fit.

If the result is stored in a plain table, it is possible to give detailed data manager info for the result
table using the DMINFO clause. See section 8.2 how the data manager info can be specified.

It is also possible to store the result in a subtable of another table using the :: notation, which is
similar to specifying an input subtable as described in the next subsection. This will also create the
keyword in the main table referring the subtable. For example:

GIVING my.ms::NEWSUB

will create subtable NEWSUB of table my.ms and define keyword NEWSUB to refer to the subtable.

16

3.5 FROM table list

The FROM part defines the tables used in the query. It is a comma-separated list of tables, each
followed by an optional shorthand (alias).

The full syntax is:

FROM table1 [shorthand1], table2 [shorthand2], ...

Similar to SQL and OQL the shorthand can also be given using AS or IN. E.g.

SELECT FROM mytable AS my, other IN ~user/othertable

Note that if using IN, the shorthand has to precede the table name. It can be seen as an iterator
variable.

The shorthand can be used in the query to qualify the table to be used for a column, for example
t0.DATA. The first table in the list is the primary table which will be used if a column is not qualified
by a shorthand. Often a query uses a single table in which case a shorthand is not needed. Multiple
tables require a shorthand and are useful if:

• A keyword in another table is needed.

• Columns from multiple tables are used (an implicit join). In such a case the tables must have
the same number of rows. For example, a regression test could be done like:

SELECT FROM test.MS t1, result.MS t2

WHERE not all(near(t1.DATA, t2.DATA))

If the table is normal table with a fully alphanumeric name, the shorthand defaults to that name. In
practice a shorthand is always needed if multiple tables are used.

The FROM clause can be omitted, in which case the input is a virtual table with no columns.
The number of rows in it is defined by the LIMIT and OFFSET value; it defaults to 1 row. It
makes it possible to select column-independent expressions (such as function random) in the SELECT
command. Note that these expressions do not need to be constant. For example

SELECT rowid() LIMIT 31

creates a temporary table with column Col 1 and 31 rows containing the values 0..30.

A table can be given in a variety of ways.

1. A persistent table can be used by giving its name which can contain path specification and
environment variables or the UNIX ~ notation. If the tablename contains a special character,
the character can be escaped with a backslash or the table name can be enclosed in single or
double quotes.

2. A table name can be taken from a keyword in a previously specified table. This can be useful
in a subquery. The syntax for this is the same as that for specifying keywords in an expression.
E.g.

SELECT FROM mytable tab

WHERE col1 IN [SELECT subcol FROM tab.col2::key]

17

In this example key is a table keyword of column col2 in table mytable (note that tab is the
shorthand for mytable and could be left out).
It can also be used for another table in the main query. E.g.,

SELECT FROM mytable, ::key subtab

WHERE col1 > subtab.key1

In this example the keyword key1 is taken from the subtable given by the table keyword key in
the main table.
If a keyword is used as the table name, the keyword is searched in one of the tables previously
given. The search starts at the current query level and proceeds outwards (i.e., up to the main
query level). If a shorthand is given, only tables with that shorthand are taken into account. If
no shorthand is given, only primary tables are taken into account.

3. In a way similar to above, two colons can be used to denote the latest table at the same level.
If none, at the next higher query level. The example below is an excerpt from the full example
below.

select from my.ms,

[select from :: where sumsqr(UVW[1:2]) < 625] as TIMESEL

The colons refer to the latest table used, thus my.ms.

4. Opening a subtable using a path name like my.ms/ANTENNA will fail if my.ms is a reference table
instead of the original table. It also fails if a table is stored in the MultiFile format. Therefore
the path of a subtable should be given using two colons instead of a slash like my.ms::ANTENNA

which is a slight extension of specifying table names in the previous bullets.
In this way a subtable can always be found.

5. Similar to OQL it is possible to use a nested query command in the FROM or JOIN clause. This
is a normal query command enclosed in square brackets or parentheses. Besides the SELECT
command the COUNT, CREATE TABLE and ALTER TABLE commands can also be used.
The table created can thereafter be used in the rest of the query command by using the shorthand
(alias) given to that table. It can also be used in the remainder of the table list, thus using it
as a backreference. Such backreferencing can be useful to avoid multiple equal subqueries. E.g.

select from my.ms,

[select from :: where sumsqr(UVW[1:2]) < 625]

as TIMESEL

where TIME in [select distinct TIME from TIMESEL]

&& any([ANTENNA1,ANTENNA2] in

[select from TIMESEL giving

[iif(UVW[3] < 0, ANTENNA1, ANTENNA2)]])

is a command to find shadowed antennas for the VLA. Without the query in the FROM command
the subqueries in the remainder of the command would have been more complex. Furthermore,
it would have been necessary to execute that select twice.
The command above is quite complex and cannot be fully understood before reading the rest of
this note. Note, however, that the command uses the shorthand TIMESEL to be able to use the

18

temporary table in the subqueries.
Also note the use of :: in the second line which refers to my.ms.
Finally note that the new WITH clause is an easier way to use temporary tables.

6. Normally only persistent tables (i.e., tables on disk) can be used. However, it is also possible
to use transient tables in a TaQL command given in Python, Glish, or C++. This is done by
passing one or more table objects to the function executing the TaQL command. In the TaQL
command a $-sign followed by a sequence number has to be given to indicate the correct object
containing the transient table. E.g., if two table objects are passed $1 indicates the first table,
while $2 indicates the second one.
In a similar way as described above it is possible to use a subtable of such a table by specifying
it as, for example, $1::subtablename or $1.column::keyword.

7. It is possible to use a concatenation of tables with the same description by giving a list of tables
enclosed in square brackets. In this way it is, for example, possible to do a query on the combined
parts of a MeasurementSet partitioned in time. Each table in the list can be specified in one of
the ways mentioned in this section, including another table concatenation.
For example:

SELECT FROM [ms.part1, ms.part2, ms.part3] WHERE ...

does a query on the three parts of an MS which are seen as a single table.
It is possible to use glob filename patterns in such a list. For example

SELECT FROM [ms.part*] WHERE ...

is the same as the example above if no other files with such a name exist. An error is given if
no table is found matching the pattern.

Subtables of the concatenated tables can be concatenated as well. Alternatively, they can be
assumed to be the same for all tables meaning that the subtable of the concatenation is the
subtable of the first table. For example, when partitioning a MeasurementSet in time, the
ANTENNA subtable is the same for all parts, while the POINTING and SYSCAL subtables
depend on time, thus have to be concatenated as well. Concatenation of subtables can be
achieved by giving them as a comma-separated list of names after the SUBTABLES keyword.
For example:

SELECT FROM [ms.part1, ms.part2 SUBTABLES SYSCAL,POINTING]

Usually the result of a TaQL query references the first table given in the FROM. In this example
the FROM table is the concatenation, which is only known during the query. In such a case
the concatenation must be made persistent, which can be done by using a GIVING (or INTO)
inside the concatenation specification. Only the table name can be given, because the persistent
concatenation only keeps the original table names; it does not make a copy of all data.
For example:

SELECT FROM [ms.part1, ms.part2 GIVING ms.conc]

WHERE ANTENNA1 != ANTENAA2 GIVING ms.cross

selects the cross-correlation baselines from the concatenation. Note the two GIVING commands.
The first one makes the concatenation persistent, the second one is the query result of the query
ms.cross. It references the matching rows in the persistent concatenation ms.conc which in its
turn references the original parts.

19

3.6 Joining tables

TaQL has various ways of joining tables which are described in the next sections.

• The JOIN clause it the most versatile way and can be used to perform left joins, where the
rows in the main table are matched against a row in the join table on one or more columns. If
multiple rows in the join table match, the first one is taken. Joins are explained in more detail
in this article.

• Multiple tables can be given in the FROM or JOIN clause. They are implicitly joined on row
number. if a column is used from them. Hence they must have the same size. If only a keyword
is used from a table, that table is not joined.

• A value vector, returned by a subquery, can be indexed. In this way the ANTENNA1 column
in a MeasurementSet can be used as index in the vector of antenna names.

• The special derivedmscal functions make it easy to obtain information from the subtables of a
MeasurementSet or Calibration Table.

3.6.1 JOIN clause

The JOIN clause can be used to left join tables in order to find (meta) data. For example, a Measure-
mentSet can be joined with its ANTENNA subtable to find the name or position of the antenna in
each row in the MeasurementSet. Columns from the join table can be used in any other clause (e.g.,
WHERE) in a TaQL command.
TaQL only supports left joins. These are joins where the rows in the left (the main) table are matched
against a single row in the joined table. If no matching row is found, ’none’ values are used if data
from the join table is used. If multiple rows match, the first matching row is used. Other types of
joins (such as full join) are not supported.

The full syntax is:

JOIN table-list ON join-expression

Multiple JOIN clauses can be given to join with multiple tables. It is also possible to join a joined
table with another table. This is shown in an example below.

The table-list is similar to that in the FROM clause, thus one or more table names followed by
a shorthand. If multiple tables are given, they must have the same number of rows. The tables are
used in the join expression, so usually a shorthand is needed.
The join-expression tells how to join tables. It is an expression consisting of one or more subexpressions
separated by AND. Each subexpression compares a column in one table with a column (or the row
number) in the join table. For example for MSv3:

FROM my.ms t1 JOIN ::ANTENNA t2 ON t1.ANTENNA1=t2.ANTENNA_ID

For each row in my.ms it finds the row in the ANTENNA subtable matching ANTENNA1. In the
SELECT clause t2.NAME can be used to get, for instance, the name of the antenna like:

SELECT t1.ANTENNA1, t2.NAME FROM my.ms t1

JOIN ::ANTENNA t2 ON t1.ANTENNA1=t2.ANTENNA_ID

Another join can be used to get the name for ANTENNA2.

20

https://learnsql.com/blog/sql-joins-types-explained

SELECT t1.ANTENNA1, t2.NAME as ANTNAME1,

t1.ANTENNA2, t3.NAME as ANTNAME2 FROM my.ms t1

JOIN ::ANTENNA t2 ON t1.ANTENNA1=t2.ANTENNA_ID

JOIN ::ANTENNA t3 ON t1.ANTENNA2=t3.ANTENNA_ID

In MSv2 quite often the row number is used as an implicit id. This can also be used in a join like:

SELECT t1.ANTENNA1, t2.NAME FROM my.ms t1

JOIN ::ANTENNA t2 ON t1.ANTENNA1=t2.rownumber()

In MSv3 an explicit ANTENNA ID is used instead of a row number. To make it possible to use
the same query for an MSv2 and MSv3, the MSID function can be used for a column in a table. It
takes a column name as argument. If the column exists, it will be used. Otherwise the rownumber

function is used. A shorthand can be given before the column name. For example:

SELECT t1.ANTENNA1, t2.NAME FROM my.ms t1

JOIN ::ANTENNA t2 ON t1.ANTENNA1=msid(t2.ANTENNA_ID)

Besides joining using the equality operator, it is also possible to join using an interval in the join
table. For example:

FROM my.ms t1

JOIN ::SYSCAL t2 ON t1.TIME AROUND t2.TIME IN t2.INTERVAL

In this example the SYSCAL subtable contains information for time intervals defined by its center
and width. The AROUND/IN interval specification can be used to find the matching row for each
TIME in the main table of the MS.

Alas, finding SYSCAL information is not as easy as shown here, because it also depends on antenna
and spectral window. So the full join is more complex. For MSv2 it should look like:

FROM my.ms ms

JOIN ::DATA_DESCRIPTION dd ON ms.DATA_DESC_ID=dd.rownumber()

JOIN ::SYSCAL sc ON dd.SPECTRAL_WINDOW=sc.SPECTRAL_WINDOW_ID

AND ms.ANTENNA1=sc.ANTENNA_ID

AND ms.TIME AROUND sc.TIME IN tsc.INTERVAL

First a join with the DATA DESCRIPTION subtable is done to find the spectral window. Thereafter
a join with the SYSCAL subtable is done using the antenna, spectral window and time.

3.6.2 Join on row number

Multiple tables can be given in the FROM or JOIN clause. They are implicitly joined on row number
as long as a column is used from such a table. Hence they must have the same size. If only a keyword
is used from a table, that table is not joined.

SELECT FROM mytable t1,othertable t2

WHERE not all(t1.DATA ~= t2.DATA)

This command can be used to check if the data in mytable is about equal to the data in othertable.
Both tables have to have the same number of rows.
The join is done on row number, thus the data in corresponding rows are compared.

21

3.6.3 Join using an indexed subquery

SELECT [SELECT NAME FROM ::ANTENNA][ANTENNA1]

FROM ~/GER1.MS

This example shows how a subquery is used to join the main table of a MeasurementSet with its
ANTENNA subtable. The subquery returns a list with the names of all antennae, which subsequently
is indexed with the antenna number to get the antenna name for each row in the main table.
The join is done using the ANTENNA1 column which gives the row number in the subtable, thus the
index in the subquery result.

3.6.4 Join using a subquery set

SELECT FROM ~/GER1.MS WHERE ANTENNA1 IN

[SELECT ROWID() FROM ::ANTENNA WHERE NAME ~ p/CS*/]

This example shows another way to use a subquery for a join of the main table of a MeasurementSet
with its ANTENNA subtable. It selects all baselines for which the first station is a core station.
The subquery returns a set containing the ids of the core stations, which is used to select the correct
stations in the main table.

3.6.5 Join using derivedmscal

Several UDF’s in the derivedmscal library make it possible to easily join a MeasuementSet or CASA
Calibration Table with a subtable like ANTENNA or SPECTRAL WINDOW. These functions know
which columns to use making the join straightforward like in

SELECT mscal.ant1name(), mscal.ant2name() from ~/GER1.MS

The library also contain the more general SUBCOL function making it possible to join any table with
a subtable. For example:

SELECT mscal.subcol(’NAMES’,’NAME’,NAMEID) from obs.parmdb

to get the parameter name for a LOFAR ParmDB table. A ParmDB table has a subtable NAMES
containing the NAME and other info of a parameter. The column NAME ID is used to reference that
subtable.

3.7 WHERE expression

It defines the selection expression which must have a boolean scalar result. A row in the primary
table is selected if the expression is true for the values in that row. The syntax of the expression is
explained in a section 4.

3.8 GROUPBY group list

It defines how rows have to be grouped. Usually a result per group will be calculated using aggregate
functions. A group consists of all rows for which the columns (or expressions) given in the group list
have the same value. The (aggregate) expressions in the SELECT clause are calculated for the entire
group. In this way one can get, for example, the mean XX amplitude and the number of time slots
per baseline like:

22

SELECT ANTENNA1,ANTENNA2,GMEAN(AMPLITUDE(DATA[,0])),GCOUNT()

FROM my.ms GROUPBY ANTENNA1,ANTENNA2

It results in a table containing nbaseline rows with in each row the antenna ids, mean amplitude, and
number of rows.
If no aggregate function is used for a column, the value of the last row in the group is used. Note that
in this example ANTENNA1 and ANTENNA2 are the same for the entire group. However, if TIME
was also selected, only the last time would be part of the result.
Note that each expression in the group list has to result in a scalar value of type bool, integer, double,
date, or string.
Aggregate functions are discussed in more detail in section 5.

3.9 HAVING expression

This clause can be used to select specific groups. Only the groups (defined by GROUPBY) are selected
for which the HAVING expression is true.
Note that HAVING can be given without GROUPBY, although that will hardly ever be useful. If no
GROUPBY is given, but the SELECT statement contains an aggregate function, the result is a single
group. HAVING cannot be used if neither GROUPBY nor SELECT aggregate functions are used.
It is discussed in more detail in section 5.

3.10 ORDERBY sort list

It defines the order in which the result of the selection has to be sorted. The sort list is a comma sep-
arated list of expressions. It operates on the output of the SELECT, thus after a possible GROUPBY
and HAVING clause are executed.
The sort list can be preceded by the word ASC or DESC indicating if the given expressions are by
default sorted in ascending or descending order (default is ASC). Each expression in the sort list can
optionally be followed by ASC or DESC to override the default order for that particular sort key.
To be compliant with SQL whitespace can be used between the words ORDER and BY.

The word ORDERBY can optionally be followed by DISTINCT which means that only the first
row of multiple rows with equal sort keys is kept in the result. To be compliant with SQL dialects the
word UNIQUE or NODUPLICATES can be used instead of DISTINCT.

An expression can be a scalar column or a single element from an array column. In these cases
some optimization is performed by reading the entire column directly.
It can also be an arbitrarily complex expression with exactly the same syntax rules as the expressions
in the WHERE clause. The resulting data type of the expression must be a standard scalar one, thus
it cannot be a Regex or DateTime (see below for a discussion of the available data types). E.g.

ORDERBY col1, col2, col3

ORDERBY DESC col1, col2 ASC, col3

ORDERBY NODUPLICATES uvw[1] DESC

ORDERBY square(uvw[1]) + square(uvw[2])

ORDERBY datetime(col) # incorrect data type

ORDERBY mjd(datetime(col)) # is correct

3.11 LIMIT/OFFSET expression

It indicates which of the matching and sorted rows should be selected. If not given, all of them are
selected. The word TOP can also be used instead of LIMIT.

23

LIMIT and OFFSET are applied after ORDERBY and SELECT DISTINCT, so they are particularly useful in
combination with those clauses to select, for example, the highest 10 values.

It can be given in two ways:

• In the semi-standard SQL way using LIMIT N to select N rows and/or OFFSET M to skip the first
M rows. Similar to Python, N and M can be negative meaning they are counted from the end.
E.g., LIMIT -1 means all rows but the last.

• As a Python-style range using LIMIT start:end:incr, where the end is exclusive. Start defaults
to 0, end to the number of rows, and incr to 1. As above, start and end can be negative to count
from the end. The increment must be positive.

For example:

SELECT FROM my.tab ORDERBY DISTINCT TIME LIMIT 2 OFFSET 10

SELECT FROM my.tab ORDERBY DISTINCT TIME LIMIT 10:12

sorts uniquely by time, skips the first 10 rows, and selects the next two rows.

SELECT FROM my.tab LIMIT ::100

selects every 100-th row.

3.12 GIVING [table] [AS options] — set

It indicates that the ultimate result of the SELECT command should be written to a table (with the
given name).
Another (more SQL compliant) way to define the output table is the INTO clause. See INTO for a
more detailed description including the possible types.

It is also possible to specify a set in the GIVING clause instead of a table name. This is very
useful if the result of a subquery is used in the main query. Such a set can contain multiple elements
Each element can be a single value, range and/or interval as long as all elements have the same data
type. The parts of each element have to be expressions resulting in a scalar.

In the main query and in a query in the FROM or JOIN clause the GIVING clause can only result
in a table and not in a set.
To be compliant with SQL dialects, the word SAVETO can be used instead of GIVING. Whitespace
can be given between SAVE and TO.

4 Expressions

An expression is the basic building block of TaQL. They are similar to expressions in other languages.
An expression is formed by applying an operator or a function to operands which can be a table
column or keyword, a constant, or a subexpression. An operand can be a scalar value or an array or
set. The next subsections discuss them in detail.

An expression can be used in several places:

• In the WHERE and HAVING clause where the result must be a boolean scalar value. It tells if
a table row or group will be selected.

• As a key in the GROUPBY clause where the result must be a scalar value (numeric, bool, or
string).

24

• As a sort key in the ORDERBY clause where the result must be a scalar value (numeric, bool,
or string)

• As an element in the set in the GIVING clause. It must be a scalar value of any type except
regex.

• As a scalar or array value in the INSERT and UPDATE command.

• As a column expression in the column-list part of the SELECT command. The result can be a
scalar or array value.

• As a scalar or array value in the CALC command.

• As a scalar or array value in various ALTER TABLE subcommands

The expression in the clause can be as complex as one likes using arithmetic, comparison, and
logical operators. Parentheses can be used to group subexpressions.
The operands in an expression can be table columns, table keywords, constants, units, functions, sets
and intervals, and subqueries.
The index operator can be used to take a single element or a subsection from an array expression.
For example,

column1 > 10

column1 + arraycolumn[index] >= min (column2, column3)

column1 IN [expr1 =:< expr2]

The last example shows a set with a continuous interval.

4.1 Data Types

Internally TaQL uses the following data types:

Bool logical values (true/false (case-insensitive) or T/F)

Integer integer numbers up to 64 bits

Double 64 bit floating point numbers including times/positions

Complex 128 bit complex numbers

String string values on which operator + can be used (concatenation).

Regex regular expressions can be used for string matching (see section 4.2). Maximum string dis-
tances can also be used in a way similar to regular expressions.

DateTime representing a date/time. There are several functions acting on a date/time. Operator
+ and - can be used on them.

Scalars and arbitrarily shaped arrays of these data types can be used. However, arrays of Regex are
not possible.
If an operand or function argument with a non-matching data type is used, TaQL will do the following
automatic conversions:
- from Integer to Double or Complex.

25

- from Double to Complex.
- from String or Double to DateTime.

In this document some special data types are used when describing the functions.
- Real means Integer or Double.
- Numeric means Integer, Double, or Complex.
- DNumeric means Double or Complex.

TaQL supports any possible data type of a table column or keyword. In some commands (column
list and CREATE TABLE) columns are created where it is possible to specify the data type of a
column. The following case-insensitive values can be used to specify a type:

B BOOL BOOLEAN

U1 UC UCHAR BYTE

I2 SHORT SMALLINT

U2 UI2 USHORT USMALLINT

I4 INT INTEGER

U4 UI4 UINT UINTEGER

I8 LONG BIGINT

R4 FLT FLOAT

R8 DBL DOUBLE

C4 FC FCOMPLEX COMPLEX

C8 DC DCOMPLEX

S STRING

TIME DATE EPOCH

The TIME type is a special data type. It means that the column gets data type DOUBLE and that a
MEASINFO record will be defined in the column keywords to designate the column as an epoch.

4.2 Regular Expressions and String Distances

TaQL supports the use of extended regular expressions and string distances. They can be specified in
various ways as discussed in section 4.3.6. There are three basic types of regular expressions.

• An SQL-style pattern is quite simple. It has 2 special characters. The underscore () means a
single arbitrary character and the percent (%) means zero or more arbitrary characters. Special
characters can be escaped with a backslash to retain their normal meaning. For example:

3c_%

matches 3c and 3c xx, but not 3caxx.

• A UNIX-style pattern, as often used for wildcarded file names, is more powerful than the SQL-
style pattern. It has a few special characters that can be escaped with a backslash.

– The question mark (?) means a single arbitrary character.

– The asterisk (*) means zero or more arbitrary characters. For example: 3c * does the same
as the SQL-style pattern above.

– Square brackets indicate a bracket expression (character choice). For example: [ab]

matches a and b, but not c. A few special characters can be used in a bracket expres-
sion:

∗ A leading ^ or ! means negation. Thus [!ab] matches every character except a and b.

26

∗ A minus sign indicates a range. For example [0-9] matches a digit or [a-z] matches
a lowercase letter. If a minus sign cannot be interpreted as a range, it is a literal minus
sign like in [-ab] or the second minus sign in [a-z-A].

∗ Posix character classes [:xx:] where xx can be:
- alpha matching any letter
- lower matching any lowercase letter
- upper matching any uppercase letter
- alnum matching any digit or letter
- digit matching any digit
- xdigit matching any hexadecimal digit (0-9a-fA-F)
- space matching any whitespace character
- print matching any printable character (alnum, punct, space)
- punct matching any non-alnum visible character (.,!? etc.)
- graph matching any visible printable character (alnum, punct)
- cntrl matching any control character.
For example [[:isalpha:]][[:isalnum:]]* to match variable names.

∗ A bracket expression cannot be empty, thus if] is the first character in the bracket
expression, it is interpreted literally. Note that is also true if it is the first character
after the negation character.

∗ A backslash in a character class is always interpreted literally, thus special characters
cannot be escaped. However, as shown above they can always be placed such that they
are interpreted literally.

– Braces can be used for a choice between (possible empty) multi-character strings separated
by commas. Escape a comma or brace with a backslash to treat it literally. For example:
*.{h,hpp,c,cc,cpp}
It is fully nestable, thus choice strings can be patterns. For example:
*.{[hc]{,pp},c}
does the same as the example above. Note that the inner choice is between an empty string
and pp.

• An awk/egrep-like extended regular expression is most powerful. A full explanation can be found
on Wikipedia. Here only a summary of its special characters is given. They can be escaped using
backslashes.

– . matches any character.

– ^ matches beginning of string.

– $ matches end of string.

– Square brackets for a bracket expression. It is the same as described above with the
exception that ! cannot be used as negation character.

– * matches zero or more occurrences of previous character or subexpression.

– + matches one or more occurrences.

– ? matches zero or one occurrence.

– { and } for an interval giving minimum and maximum number of occurrences. For example:
[a-z]{3,5} matches lowercase string with a minimum of 3 and maximum of 5 characters.
[a-z]{3} matches exactly 3 characters.
[a-z]{3,} matches at least 3 characters.
[a-z]{,5} matches at most 5 characters.

27

– | matches left or right substring

– (and) to form subexpressions for operators like *.

– \1 till \9 mean backreference to a subexpression (first one is \1). A string part matches if
it is equal to the string part matching that subexpression. e.g., (a*)x\1 matches x, axa,
aaxaa, etc., but not axaa nor aaxa.

For example:

.*\.(h|hpp|c|cc|cpp)

.*\.[hc](pp)?|cc

do the same as the pattern examples above.

Furthermore it is possible to specify maximum string distances (known as Levensthein or Edit dis-
tance). It is explained in section 4.3.6.

column ~ d/string/ibnn

4.3 Constants

Scalar constants of the various data types can be formed in a way similar to Python and Glish. Array
constants can be formed from scalar constants.

4.3.1 Bool

A Bool constant is the value T or F (both in uppercase) or the value true or false (any case).

4.3.2 Integer

An integer constant is a numeric value without decimal point or exponent. It can also be given as a
hexadecimal value like 0xffff.

4.3.3 Double (and time/position)

A floating-point constant is given with a decimal point and/or exponent. ’E’ or ’e’ can be used to
specify the exponent. An integer number followed by a unit is also regarded as a double constant.
Another way to define a Double constant is by means of a Time or Position. Such a constant is always
converted to radians. It can be given in several ways:

• An integer or floating-point number immediately followed by a simple unit (thus without whites-
pace). e.g., 12.43deg
Some valid units are deg, arcmin, arcsec (or as), rad. The units can be scaled by preceding them
with a letter (e.g., mrad is millirad).

• A time/position in HMS format. Seconds can be left out. e.g., 12h34m34.5 or 8h32m

• A position in DMS format. Seconds can be left out. e.g., 12d34m34.5 or 8d0m

• A position as DMS in dot format. Note that all parts must be present. e.g., 12.34.34.5 or
8.0.34.5

28

4.3.4 Complex

The imaginary part of a Complex constant is formed by an Integer or Double constant immediately
followed by a lowercase i or j. A full Complex constant is formed by adding another Integer or Double
constant as the real part. E.g.

1.5 + 2j

2i+1.5 is identical

Note that a full Complex constant has to be enclosed in parentheses if, say, a multiplication is per-
formed on it. E.g.

2 * (1.5+2i)

4.3.5 String

A String constant has to be enclosed in ” or ’ and can be concatenated (as in C++). E.g.

"this is a string constant"

’this is a string constant containing a "’

"ab’cd"’ef"gh’

which results in: ab’cdef"gh

4.3.6 Regular expression and String distance

A regular expression constant can be given directly or using a function.

• An SQL-style pattern can be given directly as a string constant preceded by operator LIKE or
NOT LIKE. Similar to PostgreSQL the operator ILIKE or NOT ILIKE can be used to indicate
a case-insensitive comparison.

• A pattern or regular expression can be given like x/expr/q preceded by operator ~ or !~. Instead
of a slash, the characters % and # can also be used as delimiter, as long as the same delimiter
is used on both sides. The delimiter can not be part of the expression (not even escaped with a
backslash).
The x denotes the type:
- p means a pattern matching the full string.
- f means a regular expression matching the full string.
- m means a regular expression matching part of the string (a la Perl).
The q denotes optional qualifiers. Currently only i is supported meaning a case-insensitive
match. For example:

name~p/3[cC]*/

name ~ p%3c*%i

lower(name) ~ p%3c*%

name ~ m/^3c/i

name ~ f/3c.*/i

filename !~ p#/usr/*.{h,cc}#

29

All examples but the last one do the same: matching a name starting with 3c or 3C.
The last example shows a glob-style pattern to find files on /usr not ending in .h or .cc.

• Apart from these Perl-like specifications, a regular expression can also be formed by applying a
function to a string constant. The operator = or != has to be applied to it.

– Function sqlpattern treats its argument as an SQL-style pattern. For example:

name ILIKE ’3c%’

lower(name) = sqlpattern(’3c%’)

do the same.

– Function pattern treats its argument as a UNIX-style pattern.

– Function regex treats its argument as a full regular expression.

Case-insensitive matching can only be done as shown in the example above by downcasing the
string to be matched.
Please note that these functions are not limited to constants. They can also be used to form
regular expressions from variables.

A maximum string distance constant can be specified in a similar way. Such a distance is known as
the Levensthein or Edit distance. It is a measure of the similarity of strings by counting the minimum
number of edits (deletions, insertions, substitutions, and swaps of adjacent characters) that need to
be done to make the strings equal.

column ~ d/string/ibnn

This tests if the strings in the given column are within the maximum distance of the string given in
the constant. The following qualifiers can be given (in any order):

• i means a case insensitive test.

• b means that blanks in the strings are ignored.

• nn is an integer value giving the maximum distance. If not given it defaults to 1 + len(string)

/ 3.

4.3.7 Date/time

DateTime constant can be formed in 2 ways:

1. From a String constant using the datetime function. In this way all possible formats as explained
in class MVTime are supported. E.g.

datetime ("11-Dec-1972")

2. A more convenient way is to specify it directly. Since this makes use of the delimiters space, - or
/, it conflicts with the expression grammar as such. However, possible conflicts can be solved by
using whitespace in an expression and it is believed that in practice the convenience surpasses
the possible conflicts.
A large subset of the MVTime formats is supported. A DateTime has to be specified as
date/time or date-time, where the time part (including the space, -, / or T delimiter) is
optional. If not given, it is 0. The possible date formats are:

30

../html/classcasa_1_1MVTime.html

- YYYY/MM/DD, YYYY-MM-DD, or DD-MM-YYYY where DD and MM must be 2 digits
and YYYY 4 digits.
- DD-MMMMMMMM-YY where the - is optional and MMMMMMM is the case-insensitive
name of the month (at least 3 letters). DD can be 1 or 2 digits and YY 1 to 4 digits. 2000 is
added if YY<50 and 1900 is added if 50<=YY<100.
If MM>12, YYYY will be incremented accordingly.
The date and time part must be separated by a -, /, T or space.
The general time format in a DateTime constant is:
- hh:mm:ss.s
where the delimiter h or H can be used for the first colon and m or M for the second. Trailing
parts can be omitted. E.g.

10-02-1997

10-February-97

10feb97

1997/02/10 are all identical

1May96/3: : (or h) is mandatory

1May96-3:0

1May96 3:0:0

1May96-3h h (or :) is mandatory

1May96 3H0

1May96/3h0M

1May96/3hm0.0

A DateTime constant with the current date/time can be made by using the function datetime

without arguments.

4.3.8 Arrays

N-dimensional arrays of all data types can be created with the exception of regular expressions.
It is possible to form a 1-dimensional array from a constant bounded discrete set. When needed such
a set is automatically transformed to an array. E.g.

[0:10]

[’str1’, ’str2’, ’str3’]

’str’ + [’1’, ’2’, ’3’]

The first example results in an integer array of 10 elements with values 0..9. The others result in a
string array of 3 elements. The second version already shows that strings can be concatenated (as
explained further on).

A multi-dimensional array can be formed by giving a set of arrays. A nested list resembles the
numpy way. For example:

[[1,2,3],[4,5,6]]

results in a 2-dim array. However, it is also possible to use arrays created in other ways such as arrays
in a column or arrays created with the array function described below. For example:

[[[1,2,3],[4,5,6]], array([10:13],2,3)]

31

results in a 3-dim array.
Furthermore it is possible to use the array function to create an array of any shape. The values

are given in the first argument as a scalar, set, or another array. The shape is given in the latter
arguments as scalars or as a set. The array is initialized to the values given which are wrapped if the
array has more elements.

array([1:11],10,4)

array([1:11], [10,4])

array(F,shape(DATA))

The first examples create an array with shape [10,4] containing the values 1..10 in each line. The
latter results in a boolean array having the same shape as the DATA array and filled with False.

4.3.9 Masked Arrays

An array can have an optional mask. Similar to numpy’s masked array, a mask value True means that
the value is masked off, thus not taken into account in reduce functions like calculating the mean.
Note that this definition is the same as the FLAG column in a MeasurementSet, but is different from
a mask in a Casacore Image where True means good and False means bad.

All operations on arrays will take the possible mask into account. Reduce functions like median

only use the unmasked array elements. Furthermore, partial reduce functions like medians will set an
output mask element to True if the corresponding input array part has no unmasked elements.
Operators like + and functions like cos operate on all array elements. The mask in the resulting array
is the logical OR of the input masks. Of course, the result has no mask if no input array has a mask.

A masked array is created by applying a boolean array to an array using the square brackets
operator. Both arrays must have the same shape. For example:

DATA[FLAG]

DATA[DATA > 3*median(abs(DATA))]

The first example applies the FLAG column in a MeasurementSet to the DATA column. The second
example masks off high DATA values.

The functions arraydata, arraymask, and flatten can be used to get the array data or mask.
The last one flattens the array to a vector while removing all masked elements.

The TaQL commands putting values into a table accept two columns (in parentheses) for a masked
array. This is described in more detail in the appropriate sections. For example:

select means(DATA[FLAG],0) as (MD,MM) from in.ms giving out.tab

to write the data averaged over the first axis (frequency channel)into column MD. Only the unflagged
data points are taken into account. The output contains the resulting flags in column MM; a flag is
set to True if all channels were flagged.

4.3.10 Null Arrays

A cell in a table column containing variable shaped arrays, can be empty. Such a cell does not contain
an array and is represented in TaQL as a null array. Note it is different from a cell containing an
empty array, which is an array without values.

Null arrays can be used with any operator and in any function. If one of the operands or function
arguments is a null array, the result will be a null array; only array functions reducing to a scalar
(such as sum and mean) give a valid value (usually 0).

The UPDATE and INSERT commands will ignore a null array result; no value is written in that
row.

32

4.4 Table Columns

A table column can be used in a query by giving its name in the expression, possibly qualified with a
table shorthand name. A column can contain a scalar or an array value of any data type supported
by the table system. It will be mapped to the available TaQL data types. If the column keywords
define a unit for the column, the unit will be used by TaQL.

The name of a column can contain alphanumeric characters and underscores. It should start with
an alphabetic character or underscore. A column name is case-sensitive.
It is possible to use other characters in the name by escaping them with a backslash. e.g., DATE\-OBS.
In the same way a numeric character can be used as the first character of the column name. e.g.,
\1stDay.
A reserved word cannot be used directly as a column name. It can, however, be used by escaping it
with a backslash. e.g., \IN.
Note that in programming languages like C++ and Python a backslash itself has to be escaped by
another backslash. e.g., in Python: tab.query(’DATE\\-OBS>10MAR1996’).

If a column contains a record, one has to specify a field in it using the dot operator; e.g., col.fld
means use field fld in the column. It is fully recursive, so col.fld.subfld can be used if field fld is
a record in itself.
Alas records in columns are not really supported yet. One can specify fields, but thereafter an error
message will be given.

4.4.1 Referring to SELECT columns

Usually a column used in an expression will be a column in one of the tables specified in the FROM
or JOIN clause. However, it is possible to use a column created in the SELECT clause, in expressions
given in the HAVING or ORDERBY clause. In fact, a column name not preceded by a table shorthand,
is first looked up in the SELECT columns and thereafter in the first FROM table.

It can be advantageous to use a SELECT column if that column is an expression; it saves both
typing and execution time. because that expression is executed only once.

4.5 Table Keywords

It is possible to use table or column keywords, which can have a scalar or an array value or a record,
possibly nested. A table keyword has to be specified as ::key. In an expression the :: part can
be omitted if there is no column with the same name. A column keyword has to be specified as
column::key.
Note that the :: syntax is chosen, because it is similar to the scope operator in C++.
As explained in the FROM clause, keywords in the primary table and in other tables can be used. If
used from another table, it has to be qualified with the (shorthand) name of the table. E.g.,
sh.key or sh.::key
takes table keyword key from the table with the shorthand name sh.

If a keyword value is a record, it is possible to use a field in it using the dot operator. e.g.,
::key.fld to use field fld. It is fully recursive, so if the field is a record in itself, a subfield can be
used like col::key.fld.subfld

A keyword can be used in any expression. It is evaluated immediately and transformed to a
constant value.

33

4.6 Operators

TaQL has a fair amount of operators which have the same meaning as their C and Python counterparts.
The operator precedence order is:

**

! ~ + - (unary operators)

* / // %

+ -

&

^

|

== != > >= < <= ~= !~= IN INCONE BETWEEN AROUND EXISTS (I)LIKE ~ !~

&&

||

Operator names are case-insensitive. For SQL compliancy some operators have a synonym.

== =

!= <>

&& AND

|| OR

! NOT

^ XOR

All operators can be used for scalars and arrays and a mix of them. Note that arrays of regular
expressions cannot be used.

The following table shows all available operators and the data types that can be used with them.

34

Operator Data Type Description

** numeric power. It is right associative, thus 2**1**2 results in 2.
* numeric multiplication
/ numeric non-truncated division, thus 1/2 results in 0.5

// real truncated division (a la Python) resulting in an integer, thus
1./2. results in 0

% real modulo; 3.5%1.2 results in 1.1; -5%3 results in -2

+ no bool addition. If a date is used, only a real (converted to unit day)
can be added to it. String addition means concatenation.

- numeric,date subtraction. Substracting a date from a date results in a
real (with unit day). Subtracting a real (converted to unit
day) from a date results in a date.

& integer bitwise and
| integer bitwise or
^, XOR integer bitwise xor
==, = all comparison for equal. The norm is used when comparing

complex numbers.
> no bool comparison for greater
>= no bool comparison for greater or equal
< no bool comparison for less
<= no bool comparison for less or equal
! =, <> all comparison for not equal
~= numeric shorthand for the NEAR function with a tolerance of 1e-5
!~= numeric shorthand for NOT NEAR with a tolerance of 1e-5
&&, AND bool logical and
||, OR bool logical or
!, NOT bool logical not
~ integer bitwise negation
+ numeric unary plus
- numeric unary minus
~ string test if string matches a regular expression constant.
!~ string test if string does not match a regular expression constant.
(I)LIKE string test if a string matches an SQL pattern (I for case-

insensitive).
NOT (I)LIKE string test if string does not match an SQL pattern.
IN all test if a value is present in a set of values, ranges, and/or

intervals. (See the discussion of sets).
NOT IN all negation of IN
BETWEEN no bool x BETWEEN b AND c is similar to x>=b AND x<=c and x IN

[b=:=c]

NOT BETWEEN no bool x NOT BETWEEN b AND c is the negation of above.
AROUND real,datetime x AROUND mid IN width is similar to x>=mid-width/2 AND

x<=mid+width/2 and x IN [mid<:>width]

NOT AROUND no bool x NOT AROUND mid IN width is the negation of above.
INCONE cone search. (See the discussion of cone search functions).
NOT INCONE negation of INCONE
EXISTS test if a subquery finds at least N matching rows. The value

for N is taken from its LIMIT clause; if LIMIT is not given it
defaults to 1. The subquery loop stops as soon as N match-
ing rows are found. E.g. EXISTS(select from ::ANTENNA

where NAME=’’somename’’ LIMIT 2) results in true if at
least 2 matching rows in the ANTENNA table were found.

NOT EXISTS negation of EXISTS

35

4.7 Sets and intervals

As in SQL the operator IN can be used to do a selection based on a set. E.g.

SELECT FROM table WHERE column IN [1,2,3]

The result of operator IN is true if the column value matches one of the values in the set. A set can
contain any data type except a regex.

This example shows that (in its simplest form) a set consists of one or more values (which can
be arbitrary expressions) separated by commas and enclosed in square brackets. The elements in a
set have to be scalars and their data types have to be the same or convertible to a common data
type. The square brackets can be left out if the set consists of only one element. For SQL compliance
parentheses can be used instead of square brackets if the set contains more than one element.

An array is also a set, so IN can also be used on an array like:

SELECT FROM table WHERE column IN expr1

where expr1 is the array result of some expression. It is also possible to use a scalar as the righthand
of operator IN. So if expr1 is a scalar, operator IN gives the same result as operator ==.

The lefthand operand of the IN operator can also be an array or set. In that case the result is a
boolean array telling for each element in the lefthand operand if it is found in the righthand operand.

An element in a set can be more complicated than a single value. It can define multiple discrete
values and a continuous interval. The possible forms of a set element are:

1. A single value as shown in the example above.

2. start:end:incr. This specifies multiple discrete values and is similar to the way an array index
is specified. Incr defaults to 1. End defaults to an open end (i.e., no upper bound) and results
in an unbounded set. Start and end can be an integer, a real or a datetime. Incr has to be an
integer or a real. Similar to Python an increment can be negative and start less than end. Some
examples:

1:10 means 1,2,...,9 (also 10 when using glish style)

1:10:2 means 1,3,5,7,9

10:1:-2 means 10,8,6,4,2

1::2 means all odd numbers

1: means all positive integer numbers

-1::-1 means all negative integer numbers

18Aug97::2 means every other day from 18Aug97 on

These examples show constants only, but start, end, and incr can be any expression.
Note that :: used here can conflict with the :: in the keywords. e.g., a::b is scanned as a
keyword specification. If the intention is start::incr, whitespace should be used as in a: :b.
In practice this conflict will hardly ever occur.

3. Continuous intervals can be specified for data type real, string, and datetime. The specification
of an interval resembles the mathematical notation 1<x<5, where x is replaced by :. An open
interval side is indicated by <, while a closed interval side is indicated by =.
Another way to specify intervals is using curly and/or angle brackets. A curly bracket is a
closed side, the angle bracket is an open side. The following examples show how bounded and
half-bounded, (half-)open and closed intervals can be specified.
Note that an interval is not checked on start<end. If that is not the case, the result is an empty
interval.

36

1=:=5 {1,5} means 1<=x<=5 bounded closed

1<:<5 <1,5> means 1<x<5 bounded open

1=:<5 {1,5> means 1<=x<5 bounded right-open

1<:=5 <1,5} means 1<x<=5 bounded left-open

1=: {1,} {1,> means 1<=x left-bounded closed

1<: <1,} <1,> means 1<x left-bounded open

:=5 {,5} <,5} means x<=5 right-bounded closed

:<5 {,5> <,5> means x<5 right-bounded open

4. Continuous real and datetime intervals can also be specified as mid<:>width, thus by giving
the middle and the width of an interval. Such an interval is bounded and closed on both sides.
For a datetime interval the middle must be given as a datetime and the interval as a real with
a possible unit which defaults to d (days). If the width is zero, the interval is unlimited, thus
basically -infinity till +infinity. This way of specifying an interval is useful because the intervals
in a MeasurementSet are defined that way. For example:

23.5<:>5 means 21<=x<=26

19Apr2022<:>10 means 14Apr<=x<=24Apr2022

5. Intervals in a set can also be given using BETWEEN/AND and AROUND/IN. For example:

column IN [BETWEEN 10 AND 20, AROUND 35 WIDTH 10]

which is equal to

column IN [10=:=20, 35<:>10]

and

column BETWEEN 10 AND 20 OR column AROUND 35 IN 10

Thus the BETWEEN/AND and AROUND/IN syntax can be used directly to define a single
interval or be used to define intervals in a set.

It is very important to note that the 2nd form of set specification results in discrete values, while the
3rd and later forms result in continuous intervals.

Each element in a set can have its own form, i.e., one element can be a single value while another
can be an interval. If a set consists of single or bounded discrete start:end:incr values only, the set
will be expanded to an array. This makes it possible for array operators and functions (like mean) to
be applied to such sets. E.g.

WHERE column > mean([10,30:100:5])

If a set on the right side of the IN operator contains a single element (either a value, range, or interval),
it does not need to be enclosed in square brackets or parentheses.

Another form of constructing a set is using a subquery as described in section 4.11.

4.8 Array Index Operator

It is possible to take a subsection or a single element from an array column, keyword or expression
using the index operator [index1,index2,...]. This syntax is similar to that used in Python or
Glish. Similar to Python a negative value can be given meaning counting from the end. However, a
negative stride cannot be given. Taking a single element can be done as:

37

array[1, 2]

array[-1, -1] last element

array[1, some_expression]

Taking a subsection can be done as:

array[start1:end1:incr1, start2:end2:incr2, ...]

If a start value is left out it defaults to the beginning of that axis. An end value defaults to the end
of the axis and an increment defaults to one. If an entire axis is left out, it defaults to the entire axis.
E.g., an array with shape [10,15,20] can be subsectioned as:

[,,3] resulting in an array of shape [10,15,1]

[2:4, ::3, 2:15:2] resulting in an array of shape [3,5,7]

(NB. shape is [2,5,7] for python style)

[-1:-1,,] last element of first axis, all elements other axes

The examples show that an index can be a simple constant (as it will usually be). It can also be an
expression which can be as complex as one likes. The expression has to result in a real value which
will be truncated to an integer.
For fixed shaped arrays checking if array bounds are exceeded is done at parse time. For variable
shaped arrays it can only be done per row. If array bounds are exceeded, an exception is thrown. In
the future a special undefined value will be assigned if bounds of variable shaped arrays are exceeded
to prevent the selection process from aborting due to the exception.

Note that the index operator will be applied directly to a column. This results in reading only the
required part of the array from the table column on disk. It is, however, also possible to apply it to a
subexpression (enclosed in parentheses) resulting in an array. E.g.

arraycolumn[2,3,4] + 1

(arraycolumn + 1)[2,3,4]

can both be used and have the same result. However, the first form is faster, because only a single
element is read (resulting in a scalar) and 1 is added to it. The second form results in reading the
entire array. 1 is added to all elements and only then the requested element is taken.
From this example it should be clear that indexing an array expression has to be done with care.

4.9 Units

TaQL has full support of units, both basic and compound units. Each value or subexpression can be
followed by a unit telling that the value or subexpression result gets that unit or will be converted to
that unit. All basic units supported by module Quanta can be used. Compound units (such as ’m/s’)
can be given as well or are formed by a TaQL expression with units (such as ’10m/30s’). Note that
units are case sensitive. Most common units use lowercase characters. A basic unit can be preceded
by a scaling prefix (like k for kilo). The basic units and prefixes can be shown using the show units

command of the program taql.
Most basic units can be given literally (i.e., as an unquoted string) after a value or subexpression.

Whitespace between value or subexpression and unit is optional.
A compound unit can be given literally if only containing digits, underscores and/or dots (e.g., m2,
fl oz. or m.m). Otherwise the unit has to be quoted (e.g., ’m/s’) or escaped with a backslash (e.g.,
m\/s). Whitespace between value or subexpression and compound unit is mandatory unless the unit
is quoted.
For example:

38

../html/group__Quanta__module.html

10.3deg # 10.3 degrees

10.3 deg # 10.3 degrees

(1+10)deg # 11 degrees

3.6 ’km/h’ # compound unit requires quotes (or backslash)

1/10 deg # NOTE: results in unit deg-1 (divided by deg)!!!

(1/10)deg # results in 0.1deg

Units can be converted to another (conforming) unit by giving that unit after a (sub)expression.
E.g., 3 deg rad converts 3 degrees to radians. Note that the empty string (”) is an empty unit, which
can be used to make a value unitless. If ever needed, it can be used to set a non-conforming unit for
a value. E.g. (3deg ’’) kg.

There is no real distinction between giving a unit as part of a value (as in 3deg) or using whitespace
between value and unit (as in 3 deg). Also composite units (enclosed in quotes) can be given right
after a value without whitespace.
However, a few units are identical to reserved TaQL keywords (e.g., ’in’ for inch or ’as’ for arcsecond).
Such units have to be quoted or escaped with a backslash, unless given after a value without whitespace
(as in 3in). For example:

10deg rad # is fine

10 deg rad # is fine

10deg m # error; non-conforming units

10deg ’’ m # is fine (but makes little sense)

(10’m/s’)’km/h’ # is fine

10’m/s’ ’km/h’ # is fine

1in # 1 inch

1 \in # 1 inch

1 in # error; in is a reserved keyword

1as deg # 0.000277778 deg

(1 \as)deg # 0.000277778 deg

(1 as)deg # parse error; as is a reserved keyword

1 as deg # very tricky; can result in column ’deg’

Arguments to functions such as sin are converted to the appropriate unit (radians) as needed. In
a similar way, the units of operands to operators like addition, will be converted as needed to make
their units the same. An exception is thrown if a unit conversion is not possible.

Units can be given (or derived) in various ways.

• A value can be followed by a unit.

• A (sub)expression can be followed by a simple or compound unit. If the subexpression has no
unit, it gets the given unit. Otherwise the resulting value is converted to the unit.

• If a column has a unit defined in column keyword QuantumUnits or UNIT, it automatically gets
that unit.

• The result of several expressions have an implicit unit.
Constants given as positions are in radians (rad).
Difference of 2 dates is in days (d).
Inverse trigonometric functions such as asin give radians.

39

• When combining values with different units in e.g., an interval, a set, an addition, or a function
such as min, the values are converted to the unit of the first operand or argument with a unit.
Values without a unit have by default the unit of the first operand or argument with a unit. An
error is given if the units do no conform.

3mm-7cm result is -67 mm

3+3mm result is 6 mm

3mm<:<3cm result is interval <3mm,30mm>

[3,4cm,5] result is [3cm, 4cm, 5cm]

[5, 7cm, 8mm] result is [5cm, 7cm, 0.8cm]

[5, 7mm, 8cm] result is [5mm, 7mm, 80mm]

max(3mm,2cm) result is 20 mm

5 ’km/h’ + 1 ’m/s’ is 8.6 km/h

iif(F,3min,30sec) is 0.5 min

3deg-4m results in an error

• Similarly, operands of comparison operators and arguments of comparison functions (like near)
are converted to the unit of the first operand or argument with a unit.

• The result of a multiplication and division is a compound unit if both operands have a unit.
Otherwise for multiplication it is the unit of the argument with a unit and for division it is the
unit of the first operand or the reciproke unit of the second operand.
Before TaQL supported units, it was needed to divide the TIME column in a MeasurementSet
by 86400 to convert it to days, so it could be compared with a given date/time. So, for backward
compatibility, a division of a value with unit s by a constant 86400 results in unit d.

• Division of units of an equal kind (e.g., km by m) results in a unitless value.

• A value can be made unitless by using the empty string as a unit. This can be useful if values
with different units have to be combined in a set.

1km/10m result is 100

1/2s result is 0.5 ’(s)-1’

1Hz + 1/2s result is 1.5Hz

• The result of functions like SUMSQR and SQRT is a compound unit if the argument has a unit.
Note that sqrt(2m) will fail, because the square root of a meter does not exist.

COL \in set/convert column COL to inch

3 cm result is 3 cm

3 ’km/s’ result is 3 km/second

3mm cm result is 0.3 cm

(3mm cm)m result is 0.003 m

(3+3) cm result is 6 cm

(3+3mm) cm result is 0.6 cm

[3,4,5]mm result is [3mm, 4mm, 5mm]

[3,4cm,5]mm result is [30mm, 40mm, 50mm]

Note: all values in the set first get the same unit cm

asin(1) result is pi/2 radians

asin(1) deg result is 90 degrees

(3mm+7cm) m result is 0.073 m

40

• If a function argument is expected in a certain unit, values are converted as needed. For example,
arguments to functions such as sin and anycone are automatically converted to radians.

• When adding or subtracting a value from a date, that value is converted to unit d (days).

Units will probably mostly be used in an expression in the WHERE clause or in a CALC command.
However, it is also possible to use a unit in the selection of a column in the SELECT clause. For
example:

select TIME d as TIMED from my.ms

In such a case the selection is an expression and the unit is stored in the column keywords. Thus in
this example, TIME is stored in a column TIMED with keyword QuantumUnits=d and the values are
converted to days.

4.10 Functions

More than 200 functions exist to operate on scalar and/or array values. Some functions have two
names. One name is the CASA/Glish name, while the other is the name as used in SQL. In the
following tables the function names are shown in uppercase, while the result and argument types are
shown in lowercase. Note, however, that function names are case-insensitive.
Furthermore it is possible to have user defined functions that are dynamically loaded from a shared
library. In section Writing user defined functions it is explained how to write user defined functions.
A set of standard UDFs exists dealing with Measure conversions, for example to convert J2000 to
apparent. Another set of UDFs deals with values and relations in MeasurementSets and Calibration
Tables.

Sets, and in particular subqueries, can result in a 1-dim array. This means that the functions
accepting an array argument can also be used on a set or the result of a subquery.

4.10.1 String functions

These functions can be used on a scalar or an array argument.

integer STRLENGTH(string), integer LEN(string)

Returns the number of characters in a string (trailing whitespace is significant).

string UPCASE(string), string UPPER(string)

Convert to uppercase.

string DOWNCASE(string), string LOWER(string)

Convert to lowercase.

string CAPITALIZE(string)

Capitalize a string by making the first letter of each word uppercase and the rest of the word
lowercase. A word is delimited by a non-alphanumeric character.

string REVERSESTRING(string), string SREVERSE(string)

Reverse the characters of a string.

string LTRIM(string)

Removes leading whitespace.

41

string RTRIM(string)

Removes trailing whitespace.

string TRIM(string)

Removes leading and trailing whitespace.

string SUBSTR(string, integer ST, integer N)

Returns a substring starting at the 0-based position ST with a length of at most N characters.
N defaults to the string length. If the string argument is an array of strings, an array with the
substring of each string is returned. The arguments ST and N have to be scalar values. If ST
is negative, it counts from the end (a la Python). N and the resulting ST will be set to 0 if
negative. If ST exceeeds the string length, an empty string is returned.

string REPLACE(string SRC, PATTERN, string REPL)

Replaces all occurrences of PATTERN in SRC by REPL and returns the result. REPL can
be omitted and defaults to the empty string. If the first argument is an array of strings, each
element in the array is replaced. The arguments PATTERN and REPL have to be scalar values.
PATTERN can be a string or a regular expression (see below). For example:
REPLACE("abcdab", "ab") results in cd

REPLACE("abcdab", REGEX("^ab"), "xyz") results in xyzcdab

4.10.2 Regex functions

Apart from using regex/pattern constants, it is possible to use functions to form a regex or pattern.
These functions can only be used on a scalar argument.

regex REGEX(string)

Handle the given string as a regular expression.

regex PATTERN(string)

Handle the given string as a UNIX filename-like pattern and convert it to a regular expression.

regex SQLPATTERN(string)

Handle the given string as an SQL-style pattern and convert it to a regular expression.

A regex formed this way can only be used in a comparison == or !=. E.g.
object == pattern(’3C*’)

to find all 3C objects in a catalogue.
A few remarks:

1. The regex/pattern functions and operator LIKE work on any string, thus they can be used with
any string expression.

2. A Regex is case sensitive. One should use function upcase or downcase on the string to test to
make it case insensitive or use the i qualifier on a regex constant.

3. Usually a regex/pattern must match the full string, thus not part of it. However, one can use
the m// regex constant to do partial matching. Thus something like m/xx/ matches all strings
containing xx. Of course, regex(’.*xx.*’) can also be used. In this way the m// regex works
the same as in languages like Perl, Python, and Glish.

42

4.10.3 Date/time functions

These functions make it possible to handle dates/times and can be used on a scalar or an array
argument. The syntax of a date/time string or constant is explained in section 4.3.7.

DateTime DATETIME(string)

Parse the string and convert it to a DateTime value.

DateTime MJDTODATE(real)

The real value, which has to be a MJD (ModifiedJulianDate), is converted to a DateTime.

double MJD(DateTime)

Get the DateTime as MJD (ModifiedJulianDate) in days.

DateTime DATE(DateTime)

Get the date (i.e., remove the time part). This function is needed in something like:
DATE(column) == 12Feb1997

if the column contains date/times with times>0.

double TIME(DateTime)

Get the time part of the day. It is converted to radians to be compatible with the internal
representation of times/positions. In that way the function can easily be used as in:
TIME(date) > 12h

integer YEAR(DateTime)

Get the year (which includes the century).

integer MONTH(DateTime)

Get the month number (1-12).

integer DAY(DateTime)

Get the day number (1-31).

integer WEEK(DateTime)

Get the week number in the year (0 ... 53).
Note that week 1 is the week containing Jan 4th.

integer WEEKDAY(DateTime), integer DOW(DateTime)

Get the weekday number (1=Monday, ..., 7=Sunday).

string CDATETIME(DateTime), string CTOD(DateTime)

Get the DateTime as a string like YYYY/MM/DD/HH:MM:SS.SSS.

string CDATE(DateTime)

Get the date part of a DateTime as a string like DD-MMM-YYYY.

string CTIME(DateTime)

Get the time part of a DateTime as a string like HH:MM:SS.SSS.

string CMONTH(DateTime)

Get the abbreviated name of the month (Jan ... Dec).

string CWEEKDAY(DateTime), string CDOW(DateTime)

Get the abbreviated name of the weekday (Mon ... Sun).

43

All functions can be used without an argument in which case the current date/time is used. e.g.,
DATE() results in the current date.
It is possible to give a string argument instead of a date. In this case the string is parsed and converted
to a date (i.e., the function DATETIME is used implicitly).
Note that the function STR discussed in the next section can also be used for pretty-printing a
date/time. It gives more control over the number of decimals and date format.

4.10.4 Pretty printing functions

Angles (scalar or array) can be returned as strings in HMS and/or DMS format. Currently, they are
always formatted with 3 decimals in the seconds.

string HMS(real)

Return angle(s) like 12h34m56.789

string DMS(real)

Return angle(s) like 12d34m56.789

string HDMS(realarray)

Return angles like 12h34m56.789 (even elements) and 12d34m56.789 (odd elements). It is useful
for arrays containing RA,DEC values.

The functions mentioned above and the date/time functions in the previous subsection can format a
value in a predefined way only.
The STRING (shorthand STR) function makes it possible to convert values to strings using an optional
format string or width.precision value. It also makes it possible to format dates, times, and angles in
a variety of ways.

string STR(value, [format]), string STRING(value, [format])

The value can be of any type (except Regex) and can be a scalar or array. The optional format must
be a scalar string or numeric value. If no format is given, an appropriate default format will be used.
By default a value is right adjusted, but can be left adjusted by giving a negative width.
A bool value is prettyfied as ’True’ or ’False’. Using format ’%d’ it is prettyfied as 1 or 0.

• A numeric format value defines the width and/or precision. For example:

8 defines width 8 and default precision

-8 the same, but left adjusted

20.12 defines width 20 and precision 12

.8 defines precision 8 and default width

Note that precision represents all digits, not only the ones behind the decimal point. Thus 10.3
is not the same as ’%10.3d’ as the latter defines 3 decimals.

• A string format value can contain a printf-style format string, which must include the %-sign.
Note that the real and imaginary part of a complex value are formatted separately, so such a
format string needs to contain a format specifier for both parts. See printf reference for possible
format specifiers. For example:

44

https://www.cplusplus.com/reference/cstdio/printf

%10d decimal with width 10 (right adjusted)

%-10d decimal with width 10 (left adjusted)

%010d decimal with width 10 and filled with zeroes

%10.3f defines width 10 and 3 decimals

%f+%fi to format a complex value as a+bi

Apart from a printf-style format string, it is also possible to define a string to format date/time
and angle values (which are automatically converted to radians if containing units).
Such a format string contains one or more format values as defined in class MVTime. A vertical
bar or a comma (with optional whitespace) must be used as separator; they cannot be mixed.
A numeric value can be part of the string to define the precision of the time/angle. The default
precision is 6 (thus hh:mm:ss).
The optional time/angle formats and modifiers are:

Format Description

ANGLE +ddd.mm.ss.ttt
TIME hh:mm:ss.ttt
ALPHA use d,m instead of . in angles and h,m instead of : in times
YMD yyyy/mm/dd/hh:mm:ss.sss
YMD ONLY YMD without the time (same as YMD|NO TIME)
DMY dd-Mon-yyyy/hh:mm:ss.sss
FITS yyyy-mm-ddThh:mm:ss.sss
ISO yyyy-mm-dd hh:mm:ss.sssZ (same as FITS|USE Z|USE SPACE|CLEAN)
BOOST the same as DMY|USE SPACE
NO H, NO D suppress the output of hours (or degrees): useful for offsets
NO HM, NO DM suppress the degrees and minutes
CLEAN suppress leading or trailing periods or colons if not all time/angle parts

are printed (e.g., when giving NO H or 4 decimals)
DAY precede the output with Day- (e.g., Wed-)
NO TIME suppress printing of time
USE SPACE use a space between date and time (and day and date)
USE Z put a Z after the time to denote UTC
DIG2 get angle/time in range -90:+90 or -12:+12
LOCAL local time; in FITS mode append time zone as +hh:mm

Note that giving a width for a date/time or angle defines the number of digits in the time or
angle part.

For example:

YMD format as YYYY/MM/DD/HH:MM:SS

DMY|NO_TIME format as DD-MMM-YYYY

DMY | DAY | 8 format as Thu-DD-MMM-YYY/HH:MM:SS.SS

TIME format a datetime or angle as HH:MM:SS

ANGLE|9 format an angle as DD.MM.SS.SSS

If such a format string contains an invalid part, it is assumed that the entire string is a printf-
style format string.

45

../html/classcasa_1_1MVTime.html

4.10.5 Comparison functions

The exact comparison of floating point values is quite tricky. Two functions make it possible to compare
2 double or complex values with a tolerance. They can be used on scalar and array arguments (and
a mix of them). The tolerance must be a scalar though.
Note that operator = is the same as NEAR with a tolerance of 1e-5.

bool NEAR(numeric val1, numeric val2, double tol)

Tests in a relative way if a value is near another. Relative means that the magnitude of the
numbers is taken into account.
It returns abs(val2 - val1)/max(abs(val1),abs(val2)) < tol.
If tol<=0, it returns val1==val2. If either val is 0.0, it takes care of area around the minimum
number that can be represented. The default tolerance is 1.0e-13.

bool NEARABS(numeric val1, numeric val2, double tol)

Tests in an absolute way if a value is near another. Absolute means that the magnitude of the
numbers is not taken into account.
It returns abs(val2 - val1) < tol. The default tolerance is 1.0e-13.

bool ISNAN(numeric val)

Tests if a numeric value is a NaN (not-a-number).

bool ISINF(numeric val)

Tests if a numeric value is infinite (positive or negative).

bool ISFINITE(numeric val)

Tests if a numeric value is a finite number (not NaN or infinite).

4.10.6 Mathematical functions

Standard mathematical can be used on scalar and array arguments (and a mix of them).

double PI()

Return the value of pi.

double E()

Return the value of e (is equal to EXP(1)).

double C()

Return the value of the speed of light (with unit m/s).

dnumeric SIN(numeric)

dnumeric SINH(numeric)

dnumeric ASIN(numeric)

dnumeric COS(numeric)

dnumeric COSH(numeric)

dnumeric ACOS(numeric)

dnumeric TAN(numeric)

46

dnumeric TANH(numeric)

dnumeric ATAN(numeric)

dnumeric ATAN2(numeric y, numeric x)

Return ATAN(y/x) in correct quadrant.

dnumeric EXP(numeric)

dnumeric LOG(numeric)

Natural logarithm.

dnumeric LOG10(numeric)

dnumeric POW(numeric, numeric)

The same as operator **.

numeric SQUARE(numeric), numeric SQR(numeric)

The same as **2, but much faster.

dnumeric SQRT(numeric)

complex COMPLEX(real, real)

dnumeric CONJ(numeric)

double REAL(numeric)

Real part of a complex number. Returns argument if real.

double IMAG(numeric)

Imaginary part of a complex number. Returns 0 if argument is real.

real NORM(numeric)

real ABS(numeric), real AMPLITUDE(numeric), real AMPL(numeric)

double ARG(numeric), double PHASE(numeric)

numeric MIN(numeric, numeric)

numeric MAX(numeric, numeric)

real SIGN(real)

Return -1 for a negative value, 0 for zero, 1 for a positive value.

real ROUND(real)

Return the rounded value of the number. Negative numbers are rounded in an absolute way.
e.g., ROUND(-1.6) = -2.

real FLOOR(real)

Works towards negative infinity. e.g., FLOOR(-1.2) = -2.

real CEIL(real)

Works towards positive infinity.

47

real FMOD(real, real)

The same as operator %.

Note that the arguments or results of the trigonometric functions are in radians. They are converted
automatically if units are given.

4.10.7 Array to scalar reduce functions

The following functions reduce an array to a scalar. They are meant for an array, but can also be
used for a scalar.

bool ANY(bool)

Is any element true?

bool ALL(bool)

Are all elements true?

integer NTRUE(bool)

Return number of true elements.

integer NFALSE(bool)

Return number of false elements.

numeric SUM(numeric)

Return sum of all elements.

numeric SUMSQUARE(numeric), numeric SUMSQR(numeric)

Return sum of all squared elements.

numeric PRODUCT(numeric)

Return product of all elements.

real MIN(real)

Return minimum of all elements.

real MAX(real)

Return maximum of all elements.

dnumeric MEAN(numeric), dnumeric AVG(numeric)

Return mean of all elements.

double VARIANCE(numeric)

Return population variance (the sum of
(a(i) - mean(a))**2/nelements(a).
Note that the variance of a complex value uses the absolute value and is the same as the sum of
the variances of the real and imaginary parts.

double SAMPLEVARIANCE(numeric)

Return sample variance (the sum of
(a(i) - mean(a))**2/(nelements(a) - 1).

double STDDEV(numeric)

Return population standard deviation (the square root of the variance).

48

double SAMPLESTDDEV(numeric)

Return sample standard deviation (the square root of the sample variance).

double AVDEV(numeric)

Return average deviation. (the sum of
abs(a[i] - mean(a))/nelements(a).

double RMS(real)

Return root-mean-squares. (the square root of the sum of
(a(i)**2)/nelements(a).

double MEDIAN(real)

Return median (the middle element). If the array has an even number of elements, the mean of
the two middle elements is returned.

double FRACTILE(real, doublescalar fraction)

Return the value of the element at the given fraction. Fraction 0.5 is the same as the median,
but no mean of the two middle elements is taken.

4.10.8 Array to array reduce functions

These functions reduce an array to a smaller array by collapsing the given axes using the given func-
tion. The axes are the last argument(s). They can be given in two ways:
- As a single set argument; for example, maxs(ARRAY,[1,2])
- As individual scalar arguments; for example, maxs(ARRAY,1,2)
For example, using MINS(array,0,1) for a 3-dim array results in a 1-dim array where each value is
the minimum of each plane in the cube.
It is important to note that the interpretation of the axes numbers depends on the style being used.
e.g., when using glish style, axes numbers are 1-based and in Fortran order, thus axis 1 is the most
rapidly varying axis. When using python style, axis 0 is the most slowly varying axis.
Axes numbers exceeding the dimensionality of the array are ignored. For example, maxs(ARRAY,[1:10])
works for arrays of virtually any dimensionality and results in a 1-dim array.
The function names are the ’plural’ forms of the functions in the previous section. They can only be
used for arrays, thus not for scalars.

bool ANYS(bool)

Is any element true?

bool ALLS(bool)

Are all elements true?

integer NTRUES(bool)

Return number of true elements.

integer NFALSES(bool)

Return number of false elements.

numeric SUMS(numeric)

Return sum of elements.

numeric SUMSQUARES(numeric), numeric SUMSQRS(numeric)

Return sum of squared elements.

49

numeric PRODUCTS(numeric)

Return product of elements.

real MINS(real)

Return minimum of elements.

real MAXS(real)

Return maximum of elements.

dnumeric MEANS(numeric), dnumeric AVGS(numeric)

Return mean of elements.

double VARIANCES(numeric)

Return population variance (the sum of
(a(i) - mean(a))**2/nelements(a).

double SAMPLEVARIANCES(numeric)

Return sample variance (the sum of
(a(i) - mean(a))**2/(nelements(a) - 1).

double STDDEVS(numeric)

Return population standard deviation (the square root of the variance).

double SAMPLESTDDEVS(numeric)

Return sample standard deviation (the square root of the sample variance).

double AVDEVS(numeric)

Return average deviation. (the sum of
abs(a(i) - mean(a))/nelements(a).

double RMSS(real)

Return root-mean-squares. (the square root of the sum of
(a(i)**2)/nelements(a).

double MEDIANS(real)

Return median (the middle element). If the array has an even number of elements, the mean of
the two middle elements is returned.

double FRACTILES(real, doublescalar fraction)

Return the value of the element at the given fraction. Fraction 0.5 is the same as the median.

4.10.9 Array downsampling functions

These functions are a generalization of the functions in the previous section. They downsample
an array by taking, say, the mean of every n*m elements. The functions in the previous section
downsample by taking the mean of a full line or plane, etc. The most useful one is probably calculating
the boxed mean, but the other ones can be used similarly. The width of each window axis has to be
given. Missing axes default to 1. Similarly to the partial reduce functions described above, the axes
must be given as the last argument(s) and can be given as scalars or as a set.
For example, BOXEDMEAN(array,3,3) calculates the mean in each 3x3 box. At the end of an axis the
box used will be smaller if it does not fit integrally.
The functions can only be used for arrays, thus not for scalars.

50

bool BOXEDANY(bool)

Is any element true?

bool BOXEDALL(bool)

Are all elements true?

bool BOXEDNTRUE(bool)

Return number of true elements.

bool BOXEDNFALSE(bool)

Return number of false elements.

numeric BOXEDSUM(numeric)

Return sum of elements.

numeric BOXEDSUMSQUARE(numeric), numeric BOXEDSUMSQR(numeric)

Return sum of squared elements.

numeric BOXEDPRODUCT(numeric)

Return product of elements.

double BOXEDMIN(real)

Return minimum of elements.

double BOXEDMAX(real)

Return maximum of elements.

dnumeric BOXEDMEAN(numeric), dnumeric BOXEDAVG(numeric)

Return mean of elements.

double BOXEDVARIANCE(numeric)

Return population variance (the sum of
(a(i) - mean(a))**2/nelements(a).

double BOXEDSAMPLEVARIANCE(numeric)

Return sample variance (the sum of
(a(i) - mean(a))**2/(nelements(a) - 1).

double BOXEDSTDDEV(numeric)

Return population standard deviation (the square root of the variance).

double BOXEDSAMPLESTDDEV(numeric)

Return sample standard deviation (the square root of the sample variance).

double BOXEDAVDEV(numeric)

Return average deviation. (the sum of
abs(a(i) - mean(a))/nelements(a).

double BOXEDRMS(real)

Return root-mean-squares. (the square root of the sum of
(a(i)**2)/nelements(a).

double BOXEDMEDIAN(real)

Return median (the middle element).

51

double BOXEDFRACTILE(real, doublescalar fraction)

Return the value of the element at the given fraction. Fraction 0.5 is the same as the median.

4.10.10 Array functions operating in running windows

These functions transform an array into an array with the same shape by operating on a rectangular
window around each array element. The most useful one is probably calculating the running median,
but the other ones can be used similarly. The half-width of each window axis has to be given; the full
width is 2*halfwidth + 1. Missing axes default to a half-width of 0. Similarly to the partial reduce
functions described above, the axes must be given as the last argument(s) and can be given as scalars
or as a set.
For example, RUNNINGMEDIAN(array,1,1) calculates the median in a 3x3 box around each array
element. See the examples how it is applied to an image.
In the result the edge elements (i.e., the elements where no full window can be applied) are set to 0
(or False).
The functions can only be used for arrays, thus not for scalars.

bool RUNNINGANY(bool)

Is any element true?

bool RUNNINGALL(bool)

Are all elements true?

bool RUNNINGNTRUE(bool)

Return number of true elements.

bool RUNNINGNFALSE(bool)

Return number of false elements.

numeric RUNNINGSUM(numeric)

Return sum of elements.

numeric RUNNINGSUMSQUARES(numeric), numeric RUNNINGSUMSQR(numeric)

Return sum of squared elements.

numeric RUNNINGPRODUCT(numeric)

Return product of elements.

double RUNNINGMIN(real)

Return minimum of elements.

double RUNNINGMAX(real)

Return maximum of elements.

dnumeric RUNNINGMEAN(numeric), dnumeric RUNNINGAVG(numeric)

Return mean of elements.

double RUNNINGVARIANCE(numeric)

Return population variance (the sum of
(a(i) - mean(a))**2/nelements(a).

double RUNNINGSAMPLEVARIANCE(numeric)

Return sample variance (the sum of
(a(i) - mean(a))**2/(nelements(a) - 1).

52

double RUNNINGSTDDEV(numeric)

Return population standard deviation (the square root of the variance).

double RUNNINGSAMPLESTDDEV(numeric)

Return sample standard deviation (the square root of the sample variance).

double RUNNINGAVDEV(numeric)

Return average deviation. (the sum of
abs(a(i) - mean(a))/nelements(a).

double RUNNINGRMS(real)

Return root-mean-squares. (the square root of the sum of
(a(i)**2)/nelements(a).

double RUNNINGMEDIAN(real)

Return median (the middle element).

double RUNNINGFRACTILE(real, doublescalar fraction)

Return the value of the element at the given fraction. Fraction 0.5 is the same as the median.

4.10.11 Type conversion functions

Explicit type conversions can be done using one of the functions below. They can operate on scalars
and arrays.

integer INT(numeric or bool or string)

Convert the argument to an integer. A real number is truncated (-10.9 results in -10). For a
complex number the truncated real part is taken. A bool is converted to 0 (False) or 1 (True).
It does not check if a string represents a valid integer. It is interpreted until the first non-valid
character, so a string containing a floating point value is truncated.

double REAL(numeric or bool or string)

Convert the argument to a real number. For a complex number the real part is taken. A bool is
converted to 0 (False) or 1 (True). It does not check if a string represents a valid floating point
value. A string is interpreted until the first non-valid character.

complex COMPLEX(real,real)

Form a complex number from the given real and imaginary part.

complex COMPLEX(string)

Convert the string to a complex number. The number can be given like (1,2) or 1+2i. In fact,
any separator (except whitespace) between real and imaginary part is possible. It does not check
if a string represents a valid complex value. The string is interpreted until the first non-valid
character, so the last character can be any character (e.g., also j).

bool BOOL(anytype)

Convert the value to a bool. A numeric type (or date) results in False if the value is 0, otherwise
True. A string is case-insensitive. False, F, No, N, -, or 0 results in False, otherwise True.

53

4.10.12 Array creation functions

The following functions create an array value with or without a mask. Function marray creates a
new masked array, the other functions return a masked array if the input was masked, otherwise an
unmasked array.

anytypearray ARRAY(anytype,shape)

This function creates an unmasked array of the given type and shape. The shape is given in the
last argument(s). It can be given in two ways:
- As a single set argument; for example, array(0,[3,4])
- As individual scalar arguments; for example, array(0,3,4)
The first argument gives the values the array is filled with. It can be a scalar or an array of any
shape. To initialize the created array, the value array is flattened to a 1D array. Its successive
values are stored in the created array. If the new array has more values than the value array,
the value array is reset to its beginning and the process continues.
Note that a masked array can be created from an (unmasked) array and a mask using the
brackets operator like ARRAY[MASK].

anytypearray MARRAY(anytypearray,boolarray)

This function offers another way to create a masked array. The mask must be given in the
second argument; its shape must be the same as the shape of the data array. If the argument is
a scalar, it returns a 1-dim array with one element.

anytypearray NULLARRAY(anytype)

This function creates a null array. Its data type is determined by the data type of the argument.
The argument value itself is not used. It is mainly meant for test purposes.

anytypearray RESIZE(anytypearray,newshape[,mode])

This function resizes an array to the given shape and copies the values. The optional mode
argument determines how the values are copied. If the argument is not given, the new shape is
arbitrary and the dimensionality can change. The values are copied to the same index in the
new array. If an axis gets larger, the new values are set to 0 (or an empty string).
If mode is given, the dimensionality can change as well, but each new axis has to be a multiple
of the old one. If the dimensionality grows, the missing input axes have length 1. If mode=0,
copying the values is done in an upsampling way. E.g., if a new axis is twice the length of the
old one, values 1,2,3 are copied as 1,1,2,2,3,3. A good use case is applying the flags of averaged
data to the original data. If mode=1, the values in the example above are copied repeatedly as
1,2,3,1,2,3. By giving the mode as a set, it is possible to specify the mode per axis, but that is
quite esoteric.

anytypearray TRANSPOSE(anytypearray[,axes])

This function transposes an N-dim array. If no axes are given, the array is fully transposed (thus
all axes are reversed). Axes can be specified meaning that those axes will become the first axes
in the output array. Non-given axes follow thereafter in their natural order.
A possible mask is transposed as well.

anytypearray REVERSEARRAY(anytypearray[,axes]) (or AREVERSE)
This function reverses the elements of the given axes in an N-dim array. For example, revers-
ing the outer axis of [[0,1],[2,3]] results in [[2,3],[0,1]], while reversing the inner axis results in
[[1,0],[3,2]] If no axes are given, all axes are done resulting in a fully reversed array ([3,2],[1,0]]

54

in the example).
A possible mask is reversed as well.

anytypearray DIAGONAL(anytypearray[,firstaxis[,diag]])

This function takes the diagonal of 2-dim subarrays in an N-dim array resulting in an array
with 1 dimension less. For a 2-dim array, it is simply the diagonal of the matrix. For a higher
dimensional array, it takes the diagonal of each matrix defined by firstaxis and firstaxis+1.
e.g., in a 3-dim array the diagonals of each XY-plane can be taken. The default for firstaxis is
0.
The diag argument tells which diagonal has to be taken. The default 0 means the main diagonal.
A negative value means below the main diagonal, while positive means above the main diagonal.
A possible mask is diagonaled as well.

anytypearray ARRAYDATA(anytype)

This function returns the array without a mask, thus removes the mask. If the argument is a
scalar, it returns a 1-dim array with one element.

boolarray ARRAYMASK(anytype), boolarray MASK(anytype)

This function returns the mask of an array. If the array has no mask, it returns a boolean array
of the same shape with all values set to False. If the argument is a scalar, it returns an 1-dim
array with one False element.

anytypearray NEGATEMASK(anytype)

This function returns the array with the negated mask. If the array has no mask, it returns the
array with a mask of all Trues. If the argument is a scalar, it returns a 1-dim array with one
element.

anytypearray REPLACEMASKED(anytype, anytype)

This function replaces the masked elements in the first argument by the corresponding value
in the second argument (which can be a scalar value). If the first argument has no mask, the
function is a no-op. If the first argument is a scalar, it returns a 1-dim array with one element.

anytypearray REPLACEUNMASKED(anytype, anytype)

This function replaces the unmasked elements in the first argument by the corresponding value
in the second argument (which can be a scalar value). If the first argument has no mask, the
replacement value is returned; a scalar replacement is expanded to the array shape. If the first
argument is a scalar, it returns a 1-dim array with one element.

anytypearray FLATTEN(anytype)

This function flattens an N-dim array to a 1-dim array keeping the unmasked elements only. If
the argument is a scalar, it returns a 1-dim array with one element.

4.10.13 Aggregate functions

The GXXX aggregate functions calculate an aggregated value for all rows in a group, usually defined with
a GROUPBY clause. For example, when grouping in TIME, an aggregate function like GNTRUE(FLAG)
counts per time slot the number of flagged data points. Aggregate functions can only be used in the
SELECT and the HAVING clause.
Most functions listed below reduce the values in a group to a scalar value, also if the value in a row
is an array (as in the GNTRUE example above). The arrays in a group can have different shapes.

55

However, there are several aggregate functions returning an array as done by the last three functions
(GHIST, GAGGR, and GROWID) shown below. Furthermore, most scalar functions have a plural
form (e.g., GNTRUES) returning an array. They are described at the end of this section.

Note that the aggregate function names differ from their SQL counterparts; they all have the prefix
G, because TaQL functions like MAX already exist for array operations. This naming scheme also makes
it more clear which TaQL functions are aggregate functions.

A technical detail is how aggregate functions are implemented. TaQL walks sequentially through
a table. Non-lazy functions operate directly on the value in a row making the table access purely
sequential. It requires that the results of all groups are held in memory. For some functions, in
particular GAGGR, this could lead to a very high memory usage. Therefore, some functions are
implemented in a lazy way. They keep the row numbers of a group and access the data when the
aggregated result of a group is needed. In this way only the data of a single group needs to be held in
memory, but the access to the table might be non-sequential making it somewhat slower. Currently,
only GAGGR and the User Defined aggregate functions are implemented in a lazy way.

integer GCOUNT(), integer GCOUNT(*)

Return the number of rows per group.

integer GCOUNT(columnname)

Return the number of rows per group for which the column has a value. Note that only a column
containing variable sized arrays can contain empty cells.

anytype GFIRST(anytype)

Return the first value of an expression in the group. The values of a column not mentioned in
the GROUPBY clause, might differ. This function can be used to return the value of the first
row in the group.

anytype GLAST(anytype)

Return the last value of the group (is similar to GFIRST).
Note this function is implicitly used if an expression without aggregate function is used in a
group.

bool GANY(bool)

Is any element true?

bool GALL(bool)

Are all elements true?

integer GNTRUE(bool)

Return number of true elements.

integer GNFALSE(bool)

Return number of false elements.

numeric GSUM(numeric)

Return sum of all elements.

numeric GSUMSQUARE(numeric), numeric GSUMSQR(numeric)

Return sum of all squared elements.

numeric GPRODUCT(numeric)

Return product of all elements.

56

real GMIN(real)

Return minimum of all elements.

real GMAX(real)

Return maximum of all elements.

dnumeric GMEAN(numeric), dnumeric GAVG(numeric)

Return mean of all elements.

double GVARIANCE(numeric)

Return population variance (the sum of
(a(i) - mean(a))**2/nelements(a).

double GSAMPLEVARIANCE(numeric)

Return sample variance (the sum of
(a(i) - mean(a))**2/(nelements(a) - 1).

double GSTDDEV(numeric)

Return population standard deviation (the square root of the variance).

double GSAMPLESTDDEV(numeric)

Return sample standard deviation (the square root of the sample variance).

double GAVDEV(real)

Return average deviation. (the sum of
abs(a[i] - mean(a))/nelements(a).

double GRMS(real)

Return root-mean-squares. (the square root of the sum of
(a(i)**2)/nelements(a).

double GMEDIAN(real)

Return median (the middle element). If the array has an even number of elements, the mean of
the two middle elements is returned.

double GFRACTILE(real, doublescalar fraction)

Return the value of the element at the given fraction. Fraction 0.5 is the same as the median.

double GHIST(real, intscalar nbin, realscalar start, realscalar end)

Return the histogram of the data using the given number of bins. The histogram contains an
extra bin at the beginning and the end for the outliers. If the rows in the group contain arrays,
they can have variable shapes.

anytypearray GAGGR(anytype), anytypearray GSTACK(anytype)

Stack the row values in a group to form an array where the row is the slowest varying axis
(similar to numpy’s dstack). Thus if the column contains scalar values, the result is a vector.
Otherwise it is an array whose dimensionality is one higher. It requires that all arrays in a group
have the same shape.
Note that this function can be very useful for arrays, because it makes it possible to use partial
reduce functions like medians to calculate the medians along arbitrary axes.

integerarray GROWID()

Return the row numbers of the rows in the group.

57

Most functions above have a plural counterpart. They calculate the aggregated value per array index,
thus the result has the same shape as the arrays in the group. Similar to function GAGGR, they
require that all arrays in a group have the same shape.
For instance, for a MeasurementSet the expression GMEANS(DATA) calculates the mean in a group per
channel/polarization. Not only it is a shorthand for MEANS(GAGGR(DATA), 0), but it usually works
faster because, unlike GAGGR, it is non-lazy.
The functions available are:

GANYS GALLS GNTRUES GNFALSES

GMINS GMAXS

GSUMS GPRODUCTS GSUMSQRS GSUMSQUARES

GMEANS GAVGS GVARIANCES GSTDDEVS

GRMSS GSAMPLEVARIANCES GSAMPLESTDDEVS

4.10.14 Miscellaneous functions

bool ISNULL(anytype)

Return True if the argument value is a null array (an array with 0 axes). Note that function
NULLARRAY can create a null array.

bool ISDEFINED(anytype)

Return False if the array value in the current row is undefined (is null). It makes it possible to
test if a cell in a column with variable shaped arrays contains an array. Furthermore, it can be
used to test if a field in a record is defined.
Note that function ISNULL can also be used to test for an undefined array in a row.

bool sh.ISCOLUMN(string)

Return False if no column with the given name exists in the table with the shorthand given
before the function name. If no shorthand is given, the first table will be used.

bool sh.ISKEYWORD(string)

Return False if no keyword with the given name exists in the table with the shorthand given
before the function name. If no shorthand is given, the first table will be used. The keyword
name can be given as described in section 4.5, thus the name of a table keyword or column
keyword or a nested field can be specified.

integer NELEMENTS(anytype), integer COUNT(anytype)

Return number of elements in an array (1 for a scalar).

integer NDIM(anytype)

Return dimensionality of an array (0 for a scalar).

integerarray SHAPE(anytype)

Return shape of an array (returns an empty array for a scalar).

integer ROWNUMBER(), integer ROWNR()

Return the row number being tested (first row is row number 0 or 1 depending on the style
used).
In combination with function RAND it can, for instance, be used to select arbitrary rows from
a table.

58

integer ROWID()

Return the row number in the original table. This is especially useful for returning the result of a
selection of a subtable of a Casacore measurement set (see also subqueries in 4.11 and examples
in section 13.1).

double RAND()

Return (per table row) a uniformly distributed random number between 0 and 1 using a Mul-
tiplicative Linear Congruential Generator. The seeds for the generator are deduced from the
current date and time, so the results are different from run to run.
The function can, for instance, be used to select a random subset from a table.

double ANGDIST(arg1,arg2), double ANGULARDISTANCE(arg1,arg2)

Return the angular distance (in radians) between the positions in arg1 and arg2. Both argu-
ments have to be numeric arrays containing an even number of values. Two subsequent values
give the RA and DEC (or longitude and latitude) of positions on a sphere. The result is a 1-dim
array containing the angular distance between corresponding positions in arg1 and arg2. If
either array contains only one position, the result is the distance between that position and each
position in the other array. If both arguments contain only 2 values, the result is a scalar. For
example:
angdist(PHASE DIR[0,], [12h13m45,4d21m39.4, 12h13m49,10d8m4])

returns an array with shape [2] containing the angular distance between the phase center of the
field and the two positions given.

double ANGDISTX(arg1,arg2), double ANGULARDISTANCEX(arg1,arg2)

Same as above, but the result is a 2-dim array giving the distance between each position in the
first argument and each position in the second argument. Only if both arguments contain a
single position, the result is a scalar.

double NORMANGLE(angle)

normalizes an angle between -pi and pi radians.

anytype IIF(cond,arg1,arg2)

This is a special funtion which operates like the ternary ?: operator in C++. If all arguments
are scalars, the result is a scalar, otherwise an array. In the latter case possible scalar arguments
are virtually expanded to arrays. IIF evaluates the condition for each element. If True, it takes
the corresponding element of arg1, otherwise of arg2.
If one of the input arrays has a mask, the output array will also have a mask. Each output mask
element value is the logical OR of the condition mask element value and the mask value of the
element taken from arg1 or arg2.

4.10.15 Cone search functions

Cone search functions make it possible to test if a source is within a given distance of a given sky
position. The expression

cos(0d1m) < sin(52deg) * sin(DEC) +

cos(52deg) * cos(DEC) * cos(3h30m - RA)

could be used to test if sources with their sky position defined in columns RA and DEC are within 1
arcmin of the given sky position.
The cone search functions implement this expression making life much easier for the user. Because

59

they can also operate on arrays of positions, searching in multiple cones can be done simultaneously.
That makes it possible to find matching source positions in two catalogues as shown in an example at
the end of this section.

The arguments of all functions are described below. All of them have to be given in radians.
However, usually one does not need to bother because TaQL makes it possible to specify positions in
many formats automatically converted to radians.

SOURCES

is a set or array giving the positions of one or more sources (e.g., in equatorial coordinates) to
be tested. Normally these are columns in a table. Where argument name SOURCE is mentioned
below, only a single source can be used, otherwise multiple sources.
For example:
[RA,DEC] for scalar columns RA and DEC.
SKYPOS for a column SKYPOS containing 2-element vectors with RA and DEC.

CONES

is a set or array giving the center positions and radii of one or more cones (e.g., as RA,DEC,radius).
Usually the user will specify it as constants.
For example:
[12h13m54, -5.3.34, 0d1m] for a single cone.
[12h13m54, -5.3.34, 0d1m, 1h2m3, 4.5.6, 0d1m] for two cones.

CONEPOS

is a set or array giving the positions of one or more cone centers (e.g., as RA,DEC).

RADII

is a scalar, set or array giving one or more radii. Each radius is applied to all positions in
CONEPOS. Specifying a cone as CONEPOS,RADIUS is easier than specifying it as CONES if the same
radius has to be used for multiple cones.
For example:
[12h13m54, -5.3.34, 1h2m3, 4.5.6], 0d1m is the same as the second CONES example above.

The following cone search functions are available.

bool ANYCONE(SOURCE,CONES)

Return T if the source is contained in at least one of the cones. Operator INCONE is a synonym.
So ANYCONE(SOURCE,CONES) is the same as SOURCE INCONE CONES.

bool ANYCONE(SOURCE,CONEPOS,RADII)

It does the same as above.

integer FINDCONE(SOURCES,CONES)

Return the index of the first cone containing the source. If a single source is given, the result is
a scalar. If multiple sources are given, the result is an array with the same shape as the source
array.

integer FINDCONE(SOURCES,CONEPOS,RADII)

It does the same as above. Note that in this case each radius is applied to each cone, so the
resulting index array is a combination of the two input arrays (with the radius as the most
rapidly varying axis).

60

bool CONES(SOURCES,CONES)

Return a 2-dim bool array. The length of the most rapidly varying axis is the number of cones.
The length of the other axis is the number of sources. When using python style, element (i,j)
in the resulting array is T if source i is contained in cone j.

bool CONES(SOURCES,CONEPOS,RADII)

It does the same as above. However, the result is a 3-dim array with the radii as the most rapidly
varying axis, cones as the next axis, and sources as the slowest axis.

Please note that ANYCONE(SOURCE,CONES) does the same as any(CONES(SOURCE,CONES)), but is faster
because it stops as soon as a cone is found.
Function CONES makes it possible to do catalogue matching. For example, to find sources matching
other sources in the same catalogue (within a radius of 10 arcseconds):

CALC CONES([RA,DEC],

[SELECT FROM table.cat GIVING [RA,DEC]], 0d0m10)

FROM table.cat

Note that in this example the SELECT clause returns an array with positions which are used as the
cone centers. So each source in the catalogue is tested against every source. It makes it an N-square
operation, thus potentially very expensive. The result is a 4-dim boolean array with shape (in glish
style) [1,nrow,1,nrow] which can be processed in Glish. Please note that the CONES function results
for each row in a array with shape [1,nrow,1].
The query can be done with multiple radii, for example also with 1 arcsecond and 1 arcminute.

CALC CONES([RA,DEC],

[SELECT FROM table.cat GIVING [RA,DEC]], [0d0m1, 0d0m10, 0d1m])

FROM table.cat

resulting in an array with glish shape [3,nrow,1,nrow]. In this way one can get a better indication
how close sources are to the cone centers.

4.10.16 User defined functions

TaQL can be extended with so-called User Defined Functions (UDF). These are dynamically loaded
functions, either written in C++ or in Python. In TaQL the name of a UDF written in C++ consists
of the name of the library (without lib prefix and extension) followed by a dot and the function name.
For example:

meas.hadec(...)

denotes function hadec in shared library libmeas.so or libcasa meas.so. For OS-X the extension
.dylib will be used.
The physical shared library name must be fully lowercase, but the UDF name used in TaQL is case-
insensitive. The name of a UDF written in Python is like py.module.func where the module part is
optional. In the USING STYLE clause it is possible to define synonyms for the UDF library names. By
default, mscal is defined as a synonym for derivedmscal and py as a synonym for pytaql.

Usually a UDF will operate on the arguments given to the function and will not itself operate on
a table given in a query command. However, some UDFs (most notably the mscal ones) do not have
arguments, but operate directly in a specific way on a table. Normally they use the first table given in
the FROM clause, but the UDF name can be preceded by a table shorthand to specify another table.
For example:

61

select t1.mscal.ha1(), t2.mscal.ha1() from my1.ms t1, my2.ms t2

to get the hourangle from two different tables. Of course, both tables need to have the same number
of rows.
Note that UDFs not directly operating on a table, will ignore a shorthand.

In section Writing user defined functions it is explained how to write user defined functions.

4.10.17 Special MeasurementSet functions

The Casacore package comes with several predefined UDFs in library libcasa derivedmscal. It
contains four groups of UDFs, all operating on a MeasurementSet and several on a CalTable, the
CASA calibration table (both old and new format).
Although the library is called derivedmscal, for ease of use it is possible to use the synonym mscal.

Get derived values
The first group calculates derived values like hourangle and azimuth for each row in the Measure-
mentSet or CalTable given in the FROM clause. It uses the time, direction and arraycenter or first
or second antenna of a baseline from the MeasurementSet or CalTable. For a CalTable, where a row
contains a single antenna, functions like PA1 are the same as PA2. All angles are returned in radians.

double MSCAL.HA()

gives the hourangle of the array center (observatory position).

double MSCAL.HA1()

gives the hourangle of ANTENNA1.

double MSCAL.HA2()

gives the hourangle of ANTENNA2.

double MSCAL.HADEC()

gives the topocentric hourangle/declination of the array center (observatory position).

double MSCAL.HADEC1()

gives the topocentric hourangle/declination of ANTENNA1.

double MSCAL.HADEC2()

gives the topocentric hourangle/declination of ANTENNA2.

doublearray MSCAL.AZEL()

gives the topocentric azimuth/elevation of the array center (observatory position).

doublearray MSCAL.AZEL1()

gives the topocentric azimuth/elevation of ANTENNA1.

doublearray MSCAL.AZEL2()

gives the topocentric azimuth/elevation of ANTENNA2.

doublearray MSCAL.ITRF()

gives the direction in (time-dependent) ITRF coordinates.

double MSCAL.LAST()

gives the local sidereal time of the array center.

62

double MSCAL.LAST1()

gives the local sidereal time of ANTENNA1.

double MSCAL.LAST2()

gives the local sidereal time of ANTENNA2.

double MSCAL.PA1()

gives the parallactic angle of ANTENNA1.

double MSCAL.PA2()

gives the parallactic angle of ANTENNA2.

doublearray MSCAL.NEWUVW()

gives the 3-vector of UVW coordinates in J2000 in meters. It recalculates them, thus does not
return the UVW coordinates stored in the MeasurementSet.

doublearray MSCAL.NEWUVWWVL()

gives the 3-vector of calculated UVW coordinates in J2000 in wavelengths for the reference
frequency of the appropriate spectral window.

doublearray MSCAL.NEWUVWWVLS()

gives the nfreq*3-matrix of calculated UVW coordinates in J2000 in wavelengths for all channel
frequencies of the appropriate spectral window.

doublearray MSCAL.UVWWVL()

gives the 3-vector of stored UVW coordinates in wavelengths for the reference frequency of the
appropriate spectral window.

doublearray MSCAL.UVWWVLS()

gives the nfreq*3-matrix of stored UVW coordinates in wavelengths for all channel frequencies
of the appropriate spectral window.

By default all these functions will use the direction given in column PHASE DIR of the FIELD
subtable. It is possible to use another column in the FIELD table by giving its name as a string
argument (e.g., HA(’DELAY DIR’)).
Except for the last 2 functions, it is possible to use an explicit direction which must be given as
[RA,DEC] in J2000 or as a case-insensitive name of a planetary object (as defined by the Casacore
Measures) or a known source (such as CygA). For example:

derivedmscal.azel1([5h23m32.76, 10d15m56.49])

derivedmscal.azel1(’MOON’)

The examples above give the azimuth and elevation of the given directions for each selected row in
the MeasurementSet, using the position of ANTENNA1 and the times in these rows.

If a string value is given, it is first tried as a planetary object. Theoretically it is possible that
a column has the same name as a planetary object. In such a case the name can be escaped by a
backslash to indicate that a column name is meant. For example:

derivedmscal.azel1(’\SUN’)

means that column SUN in the FIELD table has to be used.

63

Stokes conversion
The STOKES function makes it possible to convert the Stokes parameters of a DATA column in a
MeasurementSet, for instance from linear or circular to iquv. It is also possible to convert the weights
or flags, i.e., to combine them in the same way as the data would be combined.

complexarray MSCAL.STOKES(complexarray, string)

converts the data.

doublearray MSCAL.STOKES(doublearray, string)

combines the weights.

boolarray MSCAL.STOKES(boolarray, string)

combines the flags.

In all cases the case-insensitive string argument defines the output Stokes axes. It must be a comma
separated list of Stokes names. All values defined in the Casacore class Stokes are possible. Most
important are:

• XX, XY, YX, and/or YY.
LINEAR or LIN means XX,XY,YX,YY.

• RR, RL, LR, and/or LL.
CIRCULAR or CIRC means RR,RL,LR,LL.

• I, Q, U, and/or V.
IQUV or STOKES means I,Q,U,V.

• PTOTAL is the polarized intensity (sqrt(Q**2+U**2+V**2))

• PLINEAR is the linearly polarized intensity (sqrt(Q**2+U**2))

• PFTOTAL is the polarization fraction (Ptotal/I)

• PFLINEAR is the linear polarization fraction (Plinear/I)

• PANGLE is the linear polarization angle (0.5*arctan(U/Q)) (in radians)

If not given, the string argument defaults to ’IQUV’. For example:

select mscal.stokes(DATA,’circ’) as CIRCDATA from my.ms

creates a table with column CIRCDATA containing the circular polarization data.

CASA style selection
The BASELINE function makes it possible to do selection on baselines in a MeasurementSet or CalTable
using the special CASA selection syntax described in note 263. Similar functions CORR, TIME, FIELD,

FEED, SCAN, SPW, UVDIST, STATE, OBS, and ARRAY can be used to do selection based on other meta
data. The functions accept a string containing a selection string and return a Bool value telling if a
row matches the selection string. For example,

select from my.ms where mscal.baseline(’RT[2-4]’)

64

263.html

selects the cross-correlation baselines containing an antenna whose name matches the pattern in the
function argument.
Note there is a difference how CASA and TaQL handle unknown antennas given in the baseline
selection string. CASA tasks give an error, while TaQL will not complain and not even report it,
because doing a selection this way should not behave differently from doing it like NAME=’RTX’.
Also note that in CASA tasks only one selection string per type can be given and the final selection is
the AND of them. TaQL has the AND and OR operators making it possible to combine the selections
in all kind of ways, possibly using multiple selection strings of the same type.

Get values from a subtable
Several functions exist to get information like the name of an antenna from the subtable for each row
in the main table. Basically they do a join of the main table and a subtable. For example:

select mscal.ant1name(), mscal.ant2name() from my.ms

gets the names of the antennae used in each baseline.
The following functions can be used:

string MSCAL.ANT1NAME()

gives the name of ANTENNA1.

string MSCAL.ANT2NAME()

gives the name of ANTENNA2.

anytype MSCAL.ANT1COL(ColumnName)

gives for ANTENNA1 the value in the given column (in quotes) in the ANTENNA subtable.

anytype MSCAL.ANT2COL(ColumnName)

gives for ANTENNA2 the value in the given column (in quotes) in the ANTENNA subtable.

anytype MSCAL.STATECOL(ColumnName)

gives for STATE ID the value in the given column (in quotes) in the STATE subtable.

anytype MSCAL.OBSCOL(ColumnName)

gives for OBSERVATION ID the value in the given column (in quotes) in the OBSERVATION
subtable.

anytype MSCAL.SPWCOL(ColumnName)

gives for DATA DESC ID the value in the given column (in quotes) in the SPECTRAL WINDOW
subtable.

anytype MSCAL.POLCOL(ColumnName)

gives for DATA DESC ID the value in the given column (in quotes) in the POLARIZATION
subtable.

anytype MSCAL.FIELDCOL(ColumnName)

gives for FIELD ID the value in the given column (in quotes) in the FIELD subtable.

anytype MSCAL.PROCCOL(ColumnName)

gives for PROCESSOR ID the value in the given column (in quotes) in the PROCESSOR sub-
table.

65

anytype MSCAL.SUBCOL(SubtableName, ColumnName, idcolumn)

gives for the (integer) id-column the value in the given column in the given subtable. This is
the most common form and can be used to join any table with a subtable.

Note that the following are equivalent. The first versions are shorthands for the latter ones.

mscal.ant1name()

mscal.ant1col(’NAME’)

mscal.subcol(’ANTENNA’, ’NAME’, ANTENNA1)

In the last example the id-column must be given as such, thus must not be a string.

4.10.18 Special Measures functions

These functions make it possible to convert Casacore measures (e.g., directions) from one reference
frame to another. The prefix MEAS. has to be used for all these functions. The MEAS library
libcasa meas.so (or .dylib) will be loaded if not loaded yet. All conversions supported by Casacore’s
Measures are possible. It is quite flexible; for instance, source names can be used instead of right
ascension and declination. Also it recognizes nested MEAS functions and table columns containing
measures. For example:

meas.galactic (-6h52m36.7, 34d25m56.1, "J2000")

meas.azel ("MOON", datetime(), "WSRT")

The first example converts a J2000 position to galactic coordinates. The second example gives the
moon’s azimuth/elevation at the WSRT for the current date/time.

Below it is described how the measure values can be specified. Further down it is described in
detail for each measure type.

• Measures must be given as values optionally followed by a case-insensitive string defining the
reference frame of the values. If no frame is given, a default frame is assumed. Some value
specifications imply a measure frame, in which case the frame should not be specified. If specified,
it should match the implied frame.
The possible frames depend on the measure type. They can be shown using the show meastypes

command in the program taql.

• Values can be given as expressions with constant values and/or table columns. The values can
have a unit and sometimes must have a unit. If no unit is given, it is implied (similar to the
reference frame) or a default unit is assumed.

• A constant value can be a numeric expression, but it can also be a constant string defining
the name of an observatory (for a position), a celestial source (for a direction), or a line (for a
frequency) which are defined in the Measures tables. In such a case the measure frame and unit
are implicitly defined and should not be given.

• Depending on the measure type, a measure is represented by a single value or multiple values
(e.g., 2 or 3 for positions and directions).

• If the value is a table column containing measures, the measure frame is obtained from the
column and no extra frame argument should be given.

• If the value is a nested MEAS function, it recognises its type and measure frame and no extra
frame argument should be given.

66

../html/group__Measures__module.html

Many functions are available, but they come down to a few basic functions. The others (described
further down) are synonyms or shorthands for the basic functions described below.
A function will operate on each element of the Cartesian product of the function arguments.

doublearray MEAS.POSITION(toref, position)

converts positions to the reference frame given by the ’toref’ string. The toref value can have
a suffix telling how to return the result.
- None or XYZ: return as xyz (unit m).
- LLH: return as lon-lat-height (in rad,rad,m but without units).
- LL or LONLAT: return as lon-lat (unit rad).
- H or HEIGHT: return as height (unit m).

doublearray MEAS.EPOCH(toref, epoch, position)

converts epochs to the reference frame given by the ’toref’ string and returns the values with
unit ’d’. The position argument only needs to be given if the conversion depends om position
(e.g., UTC to LST). By default conversions to sidereal time (e.g., LAST) return the fraction
giving the true sidereal time. Only if the toref string starts with ’F-’, ’F ’, ’f-’, or ’f ’ the full
sidereal time is returned which includes the number of sidereal days since the start of MJD.

doublearray MEAS.DIRECTION(toref, direction, epoch, position)

converts directions to the reference frame given by the ’toref’ string and returns them as angles
with unit ’rad’. The epoch and position arguments only need to be given if the conversion needs
such information (e.g., when converting J2000 to apparent).

doublearray MEAS.DIRCOS(toref, direction, epoch, position)

Same as function DIRECTION, but returning 3 direction cosines instead of 2 angles.

DateTimearray MEAS.RISESET(direction, epoch, position)

returns the rise and set date/times (UTC) of the sources given in the direction argument for the
given epochs and positions.
Note that the source can be invisible all day (results in set<rise). If visible all day, rise time is
0h0m and set time is 24 hours later.
The TIME or CTIME function can be used on the result to get the time part only (as double
cq. string).
If the Sun is used as a source name (case-insensitive), it can be followed by a hyphen and one
of the following case-insensitive suffices indicating which part of the sun to use. The default is
UR which is used in most almanacs.

• CR: use the center of the sun with refraction correction.

• UR: use the upper brim of the sun with refraction correction, thus show when part of the
sun is visible.

• LR: use the lower brim of the sun with refraction correction, thus show when the full sun is
visible.

• C: use the center of the sun without refraction correction.

• U: use the upper brim of the sun without refraction correction.

• L: use the lower brim of the sun without refraction correction.

• CT: use the civil twilight (6 deg).

67

• NT: use the nautical twilight (12 deg).

• AT: use the amateur astronomical twilight (15 deg).

• ST: use the scientific astronomical twilight (18 deg).

The first six suffices can also be used with the Moon.
See stjarnhimlen.se for additional information.

doublearray MEAS.IGRF(toref, height, direction, epoch, position)

calculates earth magnetic field values using the IGRF model and returns them in the reference
frame given by ’toref’. A suffix to the function name determines how the values are returned.
- None or XYZ: return as xyz (unit nT).
- LL or LONLAT: return as lon-lat (unit rad).
- STR or STRENGTH: return as strength (unit nT).

doublearray MEAS.IGRFLOS(height, direction, epoch, position)

calculates earth magnetic field values using the IGRF model along the line of sight. The result
is in unit nT.

doublearray MEAS.IGRFLONG(height, direction, epoch, position)

calculates the longitude of the IGRF model calculation. The result is in radians.

doublearray MEAS.EARTHMAGNETIC(toref, em, epoch, position)

converts earth magnetic field values to the reference frame given by the ’toref’ string. Similar
to function IGRF the function name suffix (XYZ, LL or STR) determines how the result is
returned.

doublearray MEAS.FREQUENCY(toref, freq, radvel, direction, epoch, position)

converts frequencies to the reference frame given by the ’toref’ string and returns them with unit
Hz. Parameter ’radvel’ is only needed when converting to/from rest frequencies. The frequency
can be specified as period or wavelength by using the proper units. If no unit is given, Hz is
assumed.

doublearray MEAS.RESTFREQUENCY(freq, doppler)

calculates the rest frequencies from the doppler shifts and returns them with unit Hz.

doublearray MEAS.SHIFTFREQUENCY(freq, doppler)

shifts the (rest) frequency according to the doppler shift and returns them with unit Hz. (opposite
of function RESTFREQUENCY).

doublearray MEAS.DOPPLER(toref, doppler)

converts the dopplers to the ’toref’ type.

doublearray MEAS.DOPPLER(toref, radvel)

calculates the dopplers from the radial velocities.

doublearray MEAS.DOPPLER(toref, freq, restfreq)

calculates the dopplers from the frequencies and rest frequencies.

doublearray MEAS.RADIALVELOCITY(toref, radvel, direction, epoch, position

converts the radial velocities to the ’toref’ frame and return them with unit km/s.

doublearray MEAS.RADIALVELOCITY(toref, doppler)

calculates the radial velocities from the dopplers and returns them with unit km/s.

68

http://www.stjarnhimlen.se/comp/riset.html

For ease of use several functions have a shorthand synonym.

• POS for POSITION

• DIR for DIRECTION

• EM for EARTHMAGNETIC

• FREQ for FREQUENCY

• REST or RESTFREQ for RESTFREQUENCY

• SHIFT or SHIFTFREQ for SHIFTFREQUENCY

• REDSHIFT for DOPPLER

• RV or RADVEL for RADIALVELOCITY

For even more ease of use several functions are defined with an implicit ’toref’ argument.

doublearray MEAS.ITRFxxx(position)

converts a position to ITRF coordinates, where xxx must be XYZ, LLH, LONLAT, LL, HEIGHT
or H to define the result.

doublearray MEAS.WGSxxx(position)

converts a position to WGS84 coordinates, where xxx is the same as above. If xxx is omitted,
it defaults to XYZ.

doublearray MEAS.LAST(epoch, position)

converts an epoch to local sidereal time (without date part).
Function name MEAS.LST can be used as well.

doublearray MEAS.J2000(direction, epoch, position)

converts a direction to J2000.

doublearray MEAS.B1950(direction, epoch, position)

converts a direction to B1950.

doublearray MEAS.APP(direction, epoch, position)

converts a direction to apparent coordinates.
Function name MEAS.APPARENT can be used as well.

doublearray MEAS.HADEC(direction, epoch, position)

converts a direction to hourangle/declination.

doublearray MEAS.AZEL(direction, epoch, position)

converts a direction to azimuth/elevation.

doublearray MEAS.ECL(direction, epoch, position)

converts a direction to ecliptic coordinates.
Function name MEAS.ECLIPTIC can be used as well.

doublearray MEAS.GAL(direction, epoch, position)

converts a direction to galactic coordinates.
Function name MEAS.GALACTIC can be used as well.

69

doublearray MEAS.SGAL(direction, epoch, position)

converts a direction to supergalactic coordinates.
Function name MEAS.SUPERGAL or MEAS.SUPERGALACTIC can be used as well.

doublearray MEAS.ITRFD(direction, epoch, position)

converts a direction to ITRF coordinates.
Function name MEAS.ITRFDIR or MEAS.ITRFDIRECTION can be used as well.

doublearray MEAS.LSRK(frequency, direction, epoch, position)

converts a frequency to the LSRK frame.

doublearray MEAS.LSRD(frequency, direction, epoch, position)

converts a frequency to the LSRD frame.

doublearray MEAS.BARY(frequency, direction, epoch, position)

converts a frequency to the BARY frame.

doublearray MEAS.REST(frequency, radvel, direction, epoch, position)

calculates the rest frequency.
Function name MEAS.RESTFREQ or MEAS.RESTFREQUENCY can be used as well.

The function arguments can be given in a variety of ways. Coordinate values (such as directions)
can be followed by a ’ref’ argument telling the reference frame used for them (e.g., J2000). If not
given, a default reference frame is assumed.
Where needed, the argument data types and units are used to distinguish arguments. However, a
string value for a reference frame cannot be distinguished from a string giving the name of a source,
observatory or line. In such a case the string value is used to distinguish them.

• ’toref’ is a constant scalar string giving the reference frame to convert to. The command

taql show meastype

can be used to see the possible frames for each Measure type.

• ’direction’ gives one or more directions. They can be given in several ways.

– An array of directions, each 2 angles or 3 directions cosines. It can be given as a single list
or a multi-dim array. The choice between angles and direction cosines is based on the size
of the first dimension. If divisible by 2, it is angles, by 3 is direction cosines, otherwise an
error. Thus a list of 6 elements defines 3 directions with 2 angles each (default in radians).
It can be followed by a string defining the source reference frame which defaults to ’J2000’.

– If a single constant direction is used, it can be given as 2 (for angles) or 3 (for direction
cosines) scalar values, followed by the optional source reference frame.

– The name of a column in a table or a subset of it such as DELAY DIR[0,]. Often this is a
TableMeasures column which is recognized as such, also its source reference frame. If such
a column is given as part of an expression, it will not be recognized as a TableMeasures
column and its reference frame should be given.

– As a list of (case-insensitive) names of planetary objects (such as SUN or JUPITER) or
names of standard sources. (CasA, CygA, TauA, VirA, HerA, HydA, or PerA). ZENITH
can be given as well. In the future support for comets might be added.

70

For example:

[’MOON’,’sun’, ’venus’] # 3 planetary objects

12h23m17.5, 23d56m43.8, ’B1950’ # ra/dec as scalar constants (as B1950)

[12h23m17.5, 23d56m43.8] # ra/dec as array (default J2000)

PHASE_DIR[0,] # direction ra/dec in given column

• ’epoch’ gives one or more epochs to use. Similar to directions the reference type is taken from
the column keywords or can be given in the next argument. It defaults to UTC.
Epochs can be given in three ways:

– As a scalar or array containing double values. It can be a constant expression or a column
(expression).

– As a scalar or array containing DateTime values.

– As a scalar or array containing String values representing date/time. They will automati-
cally be converted to DateTime values using function datetime.

For example:

datetime() # current date/time

’today’ # current date/time

[select unique TIME from my.ms] # all times from some MS

9Sep2011/12:00:00, ’UTC’ # given UTC time

Note that in the last example ’UTC’ is not necessary, because it is the default.

• ’position’ gives one or more earth positions to use. They can be given as x,y,z or as lon,lat with
an optional height. Usually the unit of the first value defines if x,y,z or lon,lat is used. It is,
however, also possible to distinguish between LL and XYZ by using suffices such as XYZ in the
reference frame type given in the next argument.

– An array of positions given as xyz, as lonlat, as lon-lat-height or as height. The latter is
taken towards the pole. Note that specifying as lon-lat-height precludes use of units (angle
and length units cannot be mixed in a TaQL value). It can be given as a single list or as
a multi-dim array. If given as lonlat it can be followed by an array defining the height for
each lon,lat pair (their sizes should match). Finally it can be followed by a string defining
the source reference frame type, which defaults to ITRF for xyz and WGS84 for lonlat.
The source reference frame type can contain the suffix XYZ, LLH, LL or H to tell how the
values are specified. If no suffix is given, it is derived from the unit of the first value (angle
means LL, length means XYZ).

– If a single constant position is used, it can be given as 1, 2 or 3 scalar values, optionally
followed by the source reference type. If xyz, lonlat, lon-lat-height or height is given is
derived in the same way as above.

– The name of a column in a table or a subset of it such as POSITION[0,]. Often this is a
TableMeasures column which is recognized as such, also its source reference frame. If such
a column is used in a expression, it will not be recognized as a TableMeasures column and
its reference frame should be given.

– A list containing (case-insensitive) names of known observatories such as ’WSRT’ or ’VLA’.

71

If needed, the reference type (with optional suffix) can be given in the next argument. The
reference type defaults to ITRF if xyz coordinates are used, otherwise to WGS.
For example:

’WSRT’ # WSRT position

5deg, 52deg # 2 scalar constants (WGS84 lonlat)

(5deg, 52deg] # same, but as array

5deg, 52deg, 5m # WGS84 lonlat with height

[5deg, 52deg], [5m] # same, but as array

3.8288e+06m, 442449, 5.0649e+06 # xyz as scalars (ITRF)

[41.84m, 4.835, 55.722], ’WGS’ # xyz as array (WGS84)

POSITION # POSITION column

• ’em’ gives the earthmagnetic values to use, thus earth magnetic field strengths for given points.
They can be given as xyz or as lon-lat-strength. The default unit is nT.

– An array of earthmagnetics given as xyz or as lon-lat-strength Note that specifying as lon-
lat-strength (lls) precludes use of units (angle and length units cannot be mixed in a TaQL
value), while xyz must have a proper unit (e.g., nT or G). It means that the unit determines
if xyz or lon-lat-strength is given. It can be given as a single list or a multi-dim array. It
can be followed by a string defining the source reference type, which defaults to ITRF.

– If a single constant earthmagnetic is used, it can be given as 3 scalar values, optionally
followed by the source reference type. The unit defines if xyz or lon-lat-strength is given.

– The name of a column in a table or a subset of it such as ¡src¿EMVAL[0,]¡/src¿. Often this
is a TableMeasures column which is recognized as such, also its source reference frame. If
such a column is used in a expression, it will not be recognized as a TableMeasures column
and its reference frame should be given.

For example:

43deg, 45deg, 10nT, ’J2000’ # as scalars in J2000

[43, 45, 10], ’J2000’ # as array in J2000

• ’frequency’ gives one or more frequencies to use. Similar to directions the reference type is taken
from the column keywords or can be given in the next argument. It defaults to LSRK.
Frequencies can be given as a scalar or array containing double values. The type of wave
characteristics is recognized from the unit (using Casacore’s MVFrequency class). The values
are converted to proper frequencies (in Hz).

– frequency (1/time)

– time

– angle/time (in 2pi units)

– wavelength

– 1/wavelength (in 2pi units)

– energy (h.nu) (mass*length*length/time/time using Planck’s constant)

– impulse (mass*length using Planck’s constant and speed of light)

For example:

72

1e7 # 10 MHz in LSRK

10MHz, ’BARY’ # 10 MHz in BARY

10m # 29.9792 MHz in LSRK

10s, ’LSRK’ # 0.1 Hz

Note that in the last example ’LSRK’ is not necessary, because it is the default.

• ’radialvelocity’ gives one or more radial velocities. Its default unit is km/s and its default
reference frame is LSRK. Similar to the other values, they can be given as a scalar, as an array
or as a column (expression).

For example:

[200,300]’km/s’, ’BARY’ # array of 2 velocities in BARY

• ’doppler’ gives one or more (unitless) doppler shifts. Its default reference type is RADIO. Similar
to the other values, they can be given as a scalar, as an array or as a column (expression). For
example:

2.5, ’RADIO’ # RADIO doppler shift

Below a few examples are given showing how the MEAS functionality can be used.

meas.lst (15Oct2011/15:34, 5deg, 52deg)

hms(meas.lst (’15Oct2011/15:34’, ’WSRT’))

calculates the local apparent sidereal time for the given date/time and position. The second example
shows that an observatory name can be used for the position. It also shows that the date/time can
be given as a string.

meas.azel ("JUPITER", [select unique TIME from ~/GER1.MS],

["WSRT","VLA"])

calculates Jupiter’s azimuth/elevation for WSRT and VLA for all times returned by the subquery (see
next section for subqueries).

calc meas.b1950(PHASE_DIR[0,]) from ~/GER1.MS/FIELD’

converts the PHASE DIR directions in the FIELD table to B1950. Note that no frame information is
needed for such a conversion.

meas.azel([03h13m10,65d50m12], 24sep2015/12:0:0+[0:24]h, ’LOFAR’) deg

dms(meas.azel(03h13m10,65d50m12,’B1950’, 24sep2015/12:0:0+[0:24]h, ’LOFAR’))

calculates the azimuth/elevation of the given source direction for the LOFAR site for the next 24 hours
on the given date. The result is an array with shape [24,2]. The direction in the second example is
given in B1950, the first as the default J2000. The result of the first example is double values with
unit deg (given at the end of the expression). The result of the second example is strings in DMS
format (because function DMS is used).

meas.rest(1.03GHz,’LSRK’, 210’km/s’,’LSRK’, [03h13m10,65d50m12],’J2000’,

2Jul2016/13:3:41, ’WSRT’)

calculates the rest frequency for the given radial velocity, direction, date/time and position. The result
will have unit Hz.

73

4.11 Subqueries

As in SQL it is possible to create a set from a subquery. A subquery has the same syntax as a main
query, but has to be enclosed in square brackets or parentheses. Basically it looks like:

SELECT FROM maintable WHERE time IN

[SELECT time FROM othertable WHERE windspeed < 5]

The subquery on othertable results in a constant set containing the times for which the windspeed
matches. Subsequently the main query is executed and selects all rows from the main table with times
in that set. Note that like other bounded sets this set is transformed to a constant array, so it is
possible to apply functions to it (e.g., min, mean).

SELECT [SELECT NAME FROM ::ANTENNA][ANTENNA1] FROM ~/GER1.MS

This example shows how a subquery is used to join the main table of a MeasurementSet and its
ANTENNA subtable. The subquery returns a list with the names of all antennae, which subsequently
is indexed with the antenna number to get the antenna name for each row in the main table.

SELECT mscal.ant1name() from ~/GER1.MS

is a newer and easier way to obtain the name of ANTENNA1. It makes use of the new user defined
functions in derivedmscal which can do an implicit join of a MeasurementSet and its subtables.

SELECT FROM maintable WHERE time IN

[SELECT time FROM othertable WHERE windspeed <

mean([SELECT windspeed FROM othertable])]

This example contains another subquery to get all windspeeds and to take the mean of them. So the
first subquery selects all times where the windspeed is less than the average windspeed.
A subquery result should contain only one column, otherwise an exception is thrown.

It may happen that a subquery has to be executed twice because 2 columns from the other table
are needed. E.g.

SELECT FROM maintable WHERE any(time >=

[SELECT starttime FROM othertable WHERE windspeed < 5]

&& time <=

[SELECT endtime FROM othertable WHERE windspeed < 5])

In this case othertable contains the time range for each windspeed. For big tables it is expensive to
execute the subquery twice. A better solution is to store the result of the subquery in a temporary
table and reuse it.

SELECT FROM othertable WHERE windspeed < 5 GIVING tmptab

SELECT FROM maintable WHERE any(time >=

[SELECT starttime FROM tmptab]

&& time <=

[SELECT endtime FROM tmptab])

However, this has the disadvantage that the table tmptab still exists after the query and has to be
deleted explictly by the user. Below a better solution for this problem is shown.

TaQL has a few extensions to support tables better, in particular the Casacore MeasurementSets.

74

1. The temporary problem above can be circumvented by using the ability to use a SELECT expres-
sion in the FROM clause. E.g.

SELECT FROM maintable,

[SELECT FROM othertable WHERE windspeed < 5] tmptab

WHERE any(time >= [SELECT starttime FROM tmptab]

&& time <= [SELECT endtime FROM tmptab])

However, below an even nicer solution is given.

2. The time range problem above can be solved elegantly by using a set as the result of the subquery.
Instead of a table name, it is possible to give an expression in the GIVING clause (as mentioned
in section 3.12). E.g.

select from MY.MS where TIME in

[select FROM OTHERTABLE where WINDSPEED < 5

giving [TIME-INTERVAL/2 =:= TIME+INTERVAL/2]]

The set expression in the GIVING clause is filled with the results from the subquery and used
in the main query. So if the subquery results in 5 rows, the resulting set contains 5 intervals.
Thereafter the resulting intervals are sorted and combined where possible. In this way the
minimum number of intervals have to be examined by the main query.

3. In Casacore the other table will often be the name of a subtable, which is stored in a table or
column keyword of the main table. The standard keyword syntax can be used to indicate that
the other table is the table in the given keyword. Note that for a table keyword the :: part has
to be given, otherwise the name is treated as an ordinary table name. E.g.

select from MY.MS where TIME in

[select TIME from ::WEATHER where WINDSPEED < 5]

In this example the other table is a subtable of table my.ms. Its name is given by keyword
WEATHER of my.ms.

4. Often the result of a query on a subtable of a measurement set is used to select columns from
the main table. However, several subtables do not have an explicit key, but use the row number
as an implicit key. The function ROWID() can be used to return the row number as the subtable
query result. E.g.

select from MY.MS where DATA_DESC_ID in

[select from ::DATA_DESCRIPTION where

SPECTRAL_WINDOW_ID in [0,2,4] giving [ROWID()]]

Note that the function ROWNUMBER cannot be used here, because it will give the row number in
the selection and not (as ROWID does) the row number in the original table. Furthermore, ROWID
gives a 0-relative row number which is needed to be able to use it as a selection criterium on the
0-relative values in the measurement set.

5. Select if any channel has a UV distance < 100 wavelengths.

75

select from MY.MS t1

JOIN ::DATA_DESCRIPTION t2 ON t1.DATA_DESC_ID=t2.rownumber()

JOIN ::SPECTRAL_WINDOW t3 ON t2.SPECTRAL_WINDOW=t3.rownumber()

where any(sqrt(sumsqr(UVW[:2])) / c() * t3.CHAN_FREQ < 100)

In a MeasurementSet the UVW coordinates are stored in meters, so they have to be multiplied
with the frequency and divided by speed of light to get them in wavelengths.
The first join finds the SPECTRAL WINDOW ID for each row; the second join finds the channel
frequencies.
A derivedmscal function can be used for an easier solution as shown below.

6. select from MY.MS where any(mscal.uvwwvls() < 100)

It shows how the UVWWVLS function in derivedmscal can be used to obtain the UVW
coordinates in wavelengths.

7. Calculate the angular distance between the Mars and Jupiter as seen from the WSRT for the
coming 30 days.

calc angdist(meas.app(’mars’, date()+[0:31], ’WSRT’),

meas.app(’jupiter’, date()+[0:31], ’WSRT’))

5 Aggregation, GROUPBY, HAVING

Similar to SQL it is possible to do aggregation and grouping in TaQL and to do selection on the groups
using the HAVING clause.

5.1 Aggregation and GROUPBY

One or more aggregated values can be calculated for a group defined by the GROUPBY clause. The
aggregate functions described in section 4.10.13 can be used. For example:

SELECT ANTENNA1, ANTENNA2, gcount(), sqrt(sumsqr(UVW[:2]))

FROM my.ms GROUPBY ANTENNA1,ANTENNA2

A group is formed for the unique values of the columns given in the GROUPBY clause. In the example
above a group per baseline is formed. Usually an aggregate function is ued to calculate a value for
the group. In the example above the aggregate function gcount() counts the number of rows per
baseline.
Often only the GROUPBY columns and aggregated values are part of the SELECT clause, but the
example shows that other values (here the baseline length) can also be selected. Non-aggregated values
get the values in the last row of a group.

Usually aggregated values and GROUPBY are used jointly, but it is possible to leave out one of
them. If GROUPBY is not given, the entire table is a single group. For example:

SELECT gcount() from my.ms

does not have groups, thus shows the total number of rows in the MS.

SELECT ANTENNA1,ANTENNA2 from my.ms GROUPBY ANTENNA1,ANTENNA2

76

does not use aggregate functions, but shows the unique baselines in the MS. Apart from the order, it
has the same result as

SELECT ANTENNA1,ANTENNA2 from my.ms ORDERBY UNIQUE ANTENNA1,ANTENNA2

but is somewhat faster.
In the examples above a sole aggregate function is used, but it is also possible to use it in an

expression. Similarly, an expression can be used in the GROUPBY. For example:

select ctod(gmean(TIME)), gcount() from ~/data/GER.MS

groupby round((TIME -

[select gmin(TIME) from ~/data/GER.MS][0])/INTERVAL/5)

groups the MS in chunks of 5 time slots. Note that the nested query gets the TIME of the first time
slot. The result is a set, hence the 0th element has to be taken.

Note that an aggregate function can only be used in the SELECT and HAVING clause, so TaQL
will give an error message if used elsewhere.

5.2 HAVING

The HAVING clause can be used to select specific groups. For example:

SELECT TIME, gmax(amplitude(DATA)) as MAXA from my.ms GROUPBY TIME

HAVING MAXA > 100

SELECT TIME, gmax(amplitude(DATA)) from my.ms GROUPBY TIME

HAVING gmax(amplitude(DATA)) > 100

groups by time, but only selects the groups for which the maximum amplitude of the DATA is more
than 100. Both examples give the same result, but the first one is more efficient. Not only it is less
typing, but it is faster because it reuses the result column MAXA of the SELECT part.
Similar to WHERE, any expression can be used in HAVING, but the result has to be a bool scalar
value.

As shown in the example, HAVING will normally use aggregate functions, but it is not strictly
needed. However, selections without an aggregate function could as well be done in the WHERE
clause.
Usually HAVING will be used in combination with GROUPBY, but it can be used without. It can
also be used without an aggregate function in the SELECT. However, it is an error if both are omitted.

6 Some further remarks

6.1 Optimization

A lot of development work could be done to improve the query optimization. At this stage only a few
simple optimizations are done.

• Constant subexpressions are calculated only once. E.g.
in COL*sin(180/pi()) the part sin(180/pi()) is evaluated once.

• If a subquery generates intervals of reals or dates, overlapping intervals are combined and elim-
inated. E.g.

77

select from GER.MS where TIME in [select from ::POINTING where

sumsqr(DIRECTION[1])>0 giving [TIME-INTERVAL/2=:=TIME+INTERVAL/2]]

can generate many identical or overlapping intervals. They are sorted and combined where
possible to make the set as small as possible.

• If the righthand side of the IN operator is a single value, IN is turned into ==.

• If the righthand side of the IN operator is a set of integer values with a min-max range of
<=1024*1024, that set is turned into a boolean vector to get linear lookup time.

TaQL does not recognize common subexpressions nor does it attempt to optimize the query. It
means that the user can optimize a query by specifying the expression carefully. When using operator
|| or &&, attention should be paid to the contents of the left and right branches. Both operators
evaluate the right branch only if needed, so if possible the left branch should be the shortest one, i.e.,
the fastest to evaluate.

The user should also use functions, operators, and subqueries in a careful way.

• SQUARE(COL) is (much) faster than COL**2 or POW(COL,2), because SQUARE is faster. It is
also faster than COL*COL, because it accesses column COL only once.
Similarly SQRT(COL) is faster than COL**0.5 or POW(COL,0.5)

• SQUARE(U) + SQUARE(V) < 1000**2 is considerably faster than
SQRT(SQUARE(U) + SQUARE(V)) < 1000, because the SQRT function does not need to be eval-
uated for each row.

• TIME IN [0 <:< 4] is faster than TIME>0 && TIME<4, because in the first way the column is
accessed only once.

• Returning a column from a subquery can be done directly or as a set. E.g.

SELECT FROM maintable WHERE time IN

[SELECT time FROM othertable WHERE windspeed < 5]

could also be expressed as

SELECT FROM maintable WHERE time IN

[SELECT FROM othertable WHERE windspeed < 5 GIVING [time]]

The latter (as a set) is slower. So, if possible, the column should be returned directly. This is
also easier to write.
An even more important optimization for this query is writing it as:

SELECT FROM maintable WHERE time IN

[SELECT DISTINCT time FROM othertable WHERE windspeed < 5]

Using the DISTINCT qualifier has the effect that duplicates are removed which often results in
a much smaller set.

• Testing if a subquery contains at least N elements can be done in two ways:

78

count([select column from table where expression]) >= N

and

exists (select from table where expression limit N)

The second form is by far the best, because in that case the subquery will stop the matching
process as soon as N matching rows are found. The first form will do the subquery for the entire
table.
Furthermore in the first form a column has to be selected, which is not needed in the second
form.

• Sometimes operator IN and function ANY can be used to test if an element in an array matches
a value. E.g.

WHERE any(arraycolumn == value)

and

WHERE value IN arraycolumn

give the same result. Operator IN is faster because it stops when finding a match. If using ANY

all elements are compared first and thereafter ANY tests the resulting bool array.

• It was already shown in the section 4.8 that indexing arrays should be done with care.

7 Modifying a table

Usually TaQL will be used to get a subset from a table. However, as described in the first sections, it
can also be used to change the contents of a table using the UPDATE, INSERT, or DELETE command.
Note that a table has to be writable, otherwise those commands exit with an error message.

7.1 UPDATE

UPDATE table SET update_list [FROM table_list]

[WHERE ...] [ORDERBY ...]

[LIMIT ...] [OFFSET ...]

updates all or some rows in the first table. More input tables can be given in the FROM clause
and used in clauses like SET and WHERE. Unlike SQL it is possible to specify more tables in the
UPDATE part which is the same as specifying them in the FROM clause. However, using the FROM
clause makes it more clear that only the first table is updated.
update list is a comma-separated list of column=expression parts. Each part tells to update the
given column using the expression. Both scalar and array columns are supported. E.g.

UPDATE vla.ms SET ANTENNA1=ANTENNA1-1, ANTENNA2=ANTENNA2-1

to make the antenna numbers zero-based if accidently they were written one-based.

UPDATE this.ms set DATA=t2.DATA, FLAG=t2.FLAG

FROM that.ms t2 where all(FLAG)

UPDATE this.ms, that.ms t2 set DATA=t2.DATA, FLAG=t2.FLAG

where all(FLAG)

79

are equivalent. They copy the DATA and FLAG column of that.ms to this.ms for rows where all data
in this.ms are flagged. Note the use of the shorthand (alias) t2.

If an array gets an array value, the shape of the array can be changed (provided it is allowed for
that table column). Arrays can also be updated with a scalar value causing all elements in the array
to be set to that scalar value.

UPDATE vla.ms SET FLAG=F

It sets all elements of the arrays in column FLAG to False.
Type promotion and demotion will be done where possible. For example, an integer column can

get the value of a double expression (the result will be truncated).
Unit conversion will be done as needed. Thus if a column and its expression have different units, the
expression result is automatically converted to the column’s unit. Of course, the units must be of the
same type to be able to convert the data.

Note that if multiple column=expression parts are given, the columns are changed in the order
as specified in the update-list. It means that if an updated column is used in an expression for a later
column, the new value is used when evaluating the expression. e.g., in

UPDATE vla.ms SET DATA=DATA+1, SUMD=sum(DATA)

the SUMD update uses the new DATA values.
Thus to swap the values of the ANTENNA1 and ANTENNA2 column, one can not do:

UPDATE vla.ms SET ANTENNA1=ANTENNA2, ANTENNA2=ANTENNA1

To solve this problem a temporary table (in this case in memory) can be used to save the value of
e.g., ANTENNA1:

UPDATE my.ms

set ANTENNA1 = ANTENNA2, ANTENNA2 = orig.ANTENNA1

FROM [select ANTENNA1 from my.ms giving as memory] orig

7.1.1 Partial Array Update

It is possible to update part of an array using array indexing and slicing. E.g.,

UPDATE vla.ms SET FLAG[1,1]=T

UPDATE vla.ms SET FLAG[1,]=T

The first example sets only a single array element, while the second one sets an entire row in the array.
Similar to numpy it is also possible to use a mask like

UPDATE vla.ms SET FLAG[isnan(DATA)]=T

which sets the flag for the DATA values being a NaN. The data and mask must have the same shape.
Note this is easier to write than the similar command

UPDATE vla.ms SET FLAG = iif(isnan(DATA), T, FLAG)

Masking and slicing can be combined making it possible to use masking on a part of an array. If the
mask is given first, the slice is taken from both the data and mask. If the slice is given first, it is only
applied to the data; the mask should have the same shape as the slice. For example:

UPDATE vla.ms SET FLAG[isnan(DATA)][,0]=T

UPDATE vla.ms SET FLAG[,0][isnan(DATA[,0])]=T

Both commands set the flag for NaN data in the XX polarization. The first one is somewhat easier to
write, but processes the entire DATA and FLAG before taking the slice. The second one only reads
and processes the required parts of DATA and FLAG, thus is more efficient.

80

7.1.2 Update columns from a masked array

If a column is updated with the value of a masked array, only the array part of the masked array is
used. However, it is also possible to jointly update the data column and mask column from a masked
array by combining them in parentheses like:

UPDATE vla.ms SET (DATA,FLAG)=maskedarray

It writes the data part into DATA and the mask into FLAG. As above it is possible to use a slice or
mask operator on the combination like:

UPDATE vla.ms SET (DATA,FLAG)[,0]=maskedarray

UPDATE vla.ms SET (DATA,FLAG)[isnan(DATA)]=maskedarray

The slice or mask is applied to both columns.

7.2 INSERT

The INSERT command adds rows to the table. It can take three forms:

INSERT INTO table_list SET column=expr, column=expr, ...

INSERT INTO table_list [(column_list)]

VALUES (exprlist),(exprlist),... [LIMIT n]

INSERT INTO table_list [(column_list)] SELECT_command

The first form adds a single row setting the values in the same way as the UPDATE command. The
second form is the SQL syntax and can add multiple rows. In this form the optional LIMIT part
can also be given right after the INSERT keyword. In both forms it is possible to jointly specify
data column and mask column if the value is a masked array. This is done by combining them in
parentheses like (DATA,FLAG) as described in the previous subsection for the UPDATE command.

The first form adds one row to the table and puts the values given in the expressions into the
columns.
For example:

INSERT INTO my.ms SET ANTENNA1=0, ANTENNA2=1

adds one row, puts 0 in ANTENNA1 and 1 in ANTENNA2.

The second form can add multiple rows to the table. It puts the values given in the expression lists
into the columns given in the column list. If the column list is not given, it defaults to all stored
columns in the table in the order as they appear in the table description. Multiple expression lists
can be given; each list results in the addition of a row (however, see LIMIT clause below).
Each expression in the expression list can be as complex as needed; for example, a subquery can also
be given. Note that a subquery is evaluated before the new row is added, so the new row is not taken
into account if the subquery is done on the table being modified.
It should be clear that the number of columns has to match the number of expressions.
Note that row cells not mentioned in the column list, are not written, thus may contain rubbish in
the new rows.
The data types and units of expressions and columns have to conform in the same way as for the
UPDATE command; values have to be convertible to the column data type and unit.
For example:

81

INSERT INTO my.ms (ANTENNA1,ANTENNA2) VALUES (0,1),(2,3)

adds two rows, putting 0 and 2 in ANTENNA1 and 1 and 3 in ANTENNA2.
The LIMIT clause can be used to add multiple rows while giving fewer expressions. LIMIT can

be given at the beginning or the end of the command. For example:

INSERT INTO my.ms (COL1) VALUES (rowid()) LIMIT 100

INSERT LIMIT 5 INTO my.ms (COL1,COL2) VALUES (0,0),(1,1)

The first example will add 100 rows where the value in each row is the row number. The second
example shows that multiple expression lists can be given. It will iterate through them while adding
rows. Thus COL1 and COL2 will have the values 0, 1, 0, 1, and 0 in the new rows.

The third form evaluates the SELECT command and adds the rows found in the selection to the
table being modified (which is given in the INTO part). The columns used in the modified table are
defined in the column list. As above, they default to all stored columns. The columns used in the
selection have to be defined in the column-list part of the SELECT command. They also default to
all stored columns. Column names and data types have to match, but their order can differ.
For example:

INSERT INTO my.ms select FROM my.ms

appends all rows and columns of my.ms to itself. Please note that only the original number of rows is
copied.

INSERT INTO my.ms (ANTENNA1,ANTENNA2) select ANTENNA2,ANTENNA1

FROM other.ms WHERE ANTENNA1>0

copies rows from other.ms where ANTENNA1>0. It swaps the values of ANTENNA1 and AN-
TENNA2. All other columns are not written, thus may contain rubbish.

7.3 DELETE

DELETE FROM table_list

[WHERE ...] [ORDERBY ...] [LIMIT ...] [OFFSET ...]

deletes some or all rows from a table.

DELETE FROM my.ms WHERE ANTENNA1>13 OR ANTENNA2>13

deletes the rows matching the WHERE expression.
If no selection is done, all rows will be deleted.
It is possible to specify more than one table in the FROM clause to be able to use, for example,
keywords from other tables. Rows will be deleted from the first table mentioned in the FROM part.

8 Creating a new table

TaQL can be used to create a new table. The data managers to be used can be given in full detail.
The syntax is:

82

CREATE TABLE tablename AS options

LIKE othertable AS shorthand DROP COLUMN columnlist

ADD COLUMN colspecs

LIMIT nrows

DMINFO datamanagers

The command consists of 5 parts, all of them optional.

• The table name and options can be given in the same way as in the GIVING clause. Thus it is
also possible to create a subtable of an existing table. If no table name is given, a temporary
table is created.

• The LIKE part can be used to create the new table with the same description as othertable.
It is possible to drop some columns using the optional DROP COLUMN part. The columnlist

consists of column names separated by commas. Of course, columns can be added using the ADD
COLUMN part. Note that the shorthand of othertable can be used in the ADD COLUMN
part.

• The columns to add are defined in the colspecs part. If not given, a table without any column
is created. Below column specification is described in more detail. The words ADD COLUMN
can be omitted if the LIKE part is not used, which makes it SQL-compatible.

• An expression giving the number of rows can be specified in the LIMIT part. If not given, it
defaults to 0.

• For expert users data managers can be defined in the optional DMINFO part described further
down.

The CREATE TABLE command can be used in a nested query making it possible to fill it imme-
diately. For example:

update [create table a.tab col1 int limit 10] set col1=rowid()

creates a table with one column and ten rows. The column is filled with the row number. Note that
the following command would do the same.

select rowid() as col1 int limit 10 giving a.tab

8.1 Column specification

The colspecs part defines the column names, their data types, and optional shapes and units. It
can optionally be enclosed in square brackets or parentheses (for SQL compatibility). It is a comma
separated list of column specifications. Each specification looks like:

columnname LIKE othercolumn

datatype [NDIM=n, SHAPE=[d1,d2,...], DIRECT=0/1, UNIT=’s’,

DMTYPE=’s’, DMGROUP=’s’, COMMENT=’s’]

A column specification describes the column and consists of various parts.

• columnname gives the (alphanumerical) name of the column.

83

• The optional LIKE part can be used to tell that the default column description must be copied
from othercolumn. If t.othercolumn is given, the othercolumn is taken from the table with
shorthand ’t’ as given in the WITH part. It is possible to override parts of the description by
giving properties using the following parts.

• The data type must be given if ’LIKE othercolumn’ is not used, otherwise it can be given to
override the data type taken from the othercolumn. The possible data type strings are given in
section 4.1.

• The last part (enclosed in square brackets) can be used to define other properties of the column.
Zero or more of these keywords can be used. It makes it possible to define units, array columns
and/or default data manager to be used. The square brackets are optional if only one such
keyword is used.

– NDIM=n defines if the column contains scalars or arrays.
A negative value means a scalar, which is the default (unless shape is also given). A value
0 means an array of any dimensionality. A positive value means an array with the given
dimensionality.

– SHAPE=[d1,d2,...] makes it possible to define the exact array shape.
If given and if NDIM is positive, they should be consistent.

– DIRECT=1 tells that a fixed shaped array column has to be stored directly. The default is 0.

– UNIT=’s’ defines the unit to be used for the column.
It can be any valid unit (simple or compound). It is a string, thus must be enclosed in
quotes.

– COMMENT defines comments for the column.
It has a string value, thus quotes have to be used.

– DMTYPE, DMGROUP are rather specific and are for the expert user to specify data managers.
They have a string value, thus quotes have to be used.

8.2 Data manager specification

The datamanagers part makes it possible for the expert user to define the data managers to be used
by columns. It is a comma separated list of data manager specifications looking like the output of the
table.getdminfo command in Python. Each specification has to be enclosed in square brackets. For
example:

dminfo [NAME="ISM1",TYPE="IncrementalStMan",COLUMNS=["col1"]],

[NAME="SSM1",TYPE="StandardStMan",

SPEC=[BUCKETSIZE=1000],COLUMNS=["col2","col3"]]

The case of the keyword names used (e.g., NAME) is important. They have to be given in uppercase.
The following keywords can be given:
NAME defines the unique name of the data manager.
TYPE defines the type of data manager.
SPEC is a list of keywords giving the characteristics of the data manager. This is highly data manager
type specific. If shapes have to be given here, they always have to be in Casacore format, thus in
Fortran order. TaQL has no knowledge about these internals.
COLUMNS is a list of column names defining all columns that have to be bound to the data manager.

84

9 Removing a new table

TaQL can be used to remove one or more tables. If a plain table is removed, its subtables are removed
as well. The syntax is:

DROP TABLE table-list

The table-list is a comma separated list of table names, which can also use :: to denote subtables.

DROP TABLE my.ms, that.ms::EXTRA

removes the table ’my.ms’ and subtable EXTRA of ’that.ms’.

10 Modifying the table structure

TaQL can be used to modify the table structure, i.e., to add, rename, and remove columns and
keywords. It is also possible to add rows. The syntax is:

ALTER TABLE tablename FROM table_list subcommand_list

It changes the table with the given name. The tables given in the optional FROM clause can be
used in expressions defining keyword values. Any number of subcommands can be given, separated
by whitespace and/or comma. The following subcommands can be given. They are explained in the
next subsections.

ADD COLUMN colspecs DMINFO datamanagers

COPY COLUMN new=col, new=col, ... DMINFO datamanagers

RENAME COLUMN old TO new, old TO new, ...

DELETE COLUMN column_list

SET KEYWORD key=value AS dtype, ...

COPY KEYWORD new=key AS dtype, ...

RENAME KEYWORD old TO new, old TO new

DELETE KEYWORD keyword_list

ADD ROW nrows

The nouns COLUMN and KEYWORD can also be given in the plural form. The whitespace between
verb and noun is optional. For SQL-compatibility DROP can be used instead of DELETE.
For example:

ALTER TABLE my.tab RENAME COLUMN Col1 to Col1A, ADDCOLUMNS Col1 I4

renames column Col1 to Col1A and adds a new column Col1 with data type I4.
Note that TaQL has no way of showing keywords having a record value. The program showtableinfo

can be used for that purpose.

10.1 ADD COLUMN

ADD COLUMN colspecs DMINFO datamanagers

adds one or more columns to the table. The specification of the columns and the optional data
managers is the same as used in the CREATE TABLE command. Thus for each column a data type,
dimensionality or shape, and unit can be given. The data manager(s) for the new columns can be
specified in the DMINFO part. If not given, StandardStMan will be used. For example:

85

ADD COLUMN NCol1 R4, NCol2 R8 [UNIT="m", NDIM=3]

adds two columns, a 4-byte floating point scalar column and an 8-byte floating point 3-dim array
column. They will be stored with StandardStMan.

10.2 COPY COLUMN

COPY COLUMN newcola=cola, newcolb=colb, ... DMINFO datamanagers

makes it possible to copy the data in a column to a new column, that may not exist yet. If residing in
different tables, they must have the same number of rows. The new column gets its description from
the input column. The optional DMINFO part can be used to define the datamanager(s) for the new
columns.
Note that copying to existing columns can be done with the UPDATE command. For example:

ALTER TABLE mytab COPY COLUMN NCol1=Col1

ALTER TABLE mytab FROM othertab t COPY COLUMN NCol1=t.Col1

UPDATE mytab NCol1 SET NCol1=Col1

The first example creates column NCol1 taking its description from Col1; thereafter the contents of
Col1 are copied into it.
The second example is similar, but takes Col1 from the table with shorthand ’t’, which is given in the
FROM part. Because the data are copied, mytab and othertab must have the same number of rows.
The third example is similar to the first one, but has to be used if NCol1 already exists.

10.3 RENAME COLUMN

RENAME COLUMN old1 TO new1, old2 TO new2, etc.

renames one or more columns in a table. For example:

RENAME COLUMN NAME to NAME_SAV, ADDR to ADDR_SAV

10.4 DELETE COLUMN

DELETE COLUMN col1, col2, etc.

removes one or more columns. Note that if multiple columns are combined in a TiledStMan, they
have to be removed at the same time. Thus in that case

DELETE COLUMN col1, col2

DELETE COLUMN col1, DELETE COLUMN col2

are not the same, because the second example might fail.
DROP is a synonym for DELETE.

10.5 SET KEYWORD

SET KEYWORD key1=value1 AS dtype, etc.

86

adds a keyword with the given value or replaces the value if the keyword already exists. The value of
a keyword can be a scalar, array, or arbitrarily deeply nested record. See section 4.5 how to specify
a keyword name in a column or nested record. The AS dtype part can be used to explicitly set the
data type of a new keyword. For an existing keyword, the data type of the new value has to match
the data type of the current value.

The value can be an expression, possibly using values from another table given in the FROM
clause. It has to be a constant expression, thus cannot depend on column values. Of course, column
values can be used when aggregated to a single value. If no data type is given, the data type of the
expression result is used. If given, upward and downward coercion is possible (e.g., integer to float
and also float to integer). For example:

SET KEYWORD key1=4

SET KEYWORD ::key1=4+5 AS U4

SET KEYWORD key1 = otherkey as I4

SET KEYWORD col::ckey.subrec.fld1 = [4,5,6.]

SET KEYWORD col::ckey=[=], col::ckey.subrec=[=]

SET KEWYORD key=[] AS I4

The 1st example sets table keyword key1 to 4. Its data type is not given, thus is the expression’s data
type, in this case I8.
The 2nd example sets key1 to 9, but as an unsigned 4 byte integer. Note that the :: part is redundant.
The 3rd example copies the value of keyword otherkey while converting its data type to I4. Note that
if no data type is given, the data type of otherkey is NOT preserved, because it is seen as a TaQL
expression which has data type I8 (or R8).
The 4th example sets the ckey.subrec.fld1 in column col to the given vector. It is a nested structure,
thus field fld1 in field subrec of column keyword ckey will be set. Its data type will be R8.
Note that the command in the 4th example does not create the higher level records. If not existing
yet, the 5th example can be used to create them, where [=] denotes an empty record (it is the old
Glish syntax for an empty struct).
The last example shows how to create a key with an empty integer vector as value. In such a case the
data type must be given, because it cannot be derived from the value.

Setting a keyword to the value of another keyword is easily possible. For instance:

SET KEYWORD key2 = otherkey

However, it has two problems.
1) As explained above the data type might not be preserved.
2) Keywords having a record value cannot be copied this way, because TaQL expressions do not
support record values.

10.6 COPY KEYWORD

COPY KEYWORD key = otherkey AS dtype, etc.

copies the value of keyword otherkey to key. It can be used for any keyword value, thus also for
records. The optional AS dtype part can be used to change the data type.

87

10.7 RENAME KEYWORD

RENAME KEYWORD old1 TO new1, old2 TO new2, etc.

renames one or more table or column keywords. If the old keyword is a field in a column or a nested
record, the new name should only contain the new field name, not the full keyword path. For example:

RENAME KEYWORD NAME to NAME_SAV, Col1::CNAME to CNAME_SAV

RENAME KEYWORD KEYS.SET.NAME to NAME_SAV

The first example renames the table keyword NAME and the keyword CNAME of column Col1.
The second example renames a field in the nested records of table keyword KEYS.

10.8 DELETE KEYWORD

DELETE KEYWORD key1, key2, ...

removes one or more table or column keywords.
DROP is a synonym for DELETE.

10.9 ADD ROW

adds the given number of rows to the table.

ADD ROW nrows

where nrows can be any expression. For example,

ALTER TABLE mytab ADD ROW [SELECT GCOUNT() from othertab]

makes mytab the same size as othertab (assuming it was empty).

11 Counting in a table

Before TaQL had the GROUPBY command, the COUNT command could be used instead of the
gcount aggregate function to count the number of occurrences in a table.
For backward compatibility this command can still be used, but its usage is discouraged, also because
usually GROUPBY is faster.

The exact syntax is:

COUNT column-list FROM table-list [WHERE expression]

It counts the number of rows for each unique tuple in the column list of the table (after the possible
WHERE selection is done). For example:

COUNT TIME FROM my.ms

counts the number of rows per timestamp.

COUNT ANTENNA1,ANTENNA2 FROM my.ms

counts the number of rows per baseline.
As in the other TaQL commands a column in the column list can be any expression, but that will

be slower than straight columns.

88

12 Calculations on a table

TaQL can be used to get derived values from a table by means of an expression. The expression can
result in any data type and value type. For example, if the expression uses an array column, the result
might be a vector of arrays (an array for each row). If the expression uses a scalar column, the result
might be a vector of scalars or even a single scalar if a reduce function like SUM is used.

The CALC command was developed before the GROUPBY was available and before SELECT
could be used without the FROM part. Currently, SELECT is more powerful than the CALC com-
mand. For example, multiple expressions can be given in a SELECT command. However, especially
in Python sessions CALC has the advantage that it returns the results as a numpy-array or a list
instead of a Casacore table.

The exact syntax is:

CALC expression [FROM table_list]

The part in square brackets can be omitted if no column is (directly) used in the expression. The
examples will make clear what that means.
The following syntax is still available for backward compatibility:

CALC FROM table_list CALC expression

CALC 1in cm

is a simple expression not using a table. It shows how the CALC command can be used as a desk
calculator to convert 1 inch to cm.

CALC mean(column1+column2) FROM mytable

gives a vector of scalars containing the mean per row.

CALC sum([SELECT FROM mytable GIVING [mean(column1+column2)]])

gives a single scalar giving the sum of the means in each row. Note that in this command the CALC
command does not need the FROM clause, because it does not use a column itself. Columns are only
used in the nested query which has a FROM clause itself.

13 Examples

13.1 Selection examples

Some examples are given starting with simple ones.

13.1.1 Reference table results

The result of the following queries is a reference table, because no expressions have been given in the
column-list. This will be the most common case when using TaQL.

SELECT FROM some.ms WHERE ANTENNA1 != ANTENNA2

selects the cross-correlations in a MeasurementSet.

SELECT NAME FROM some.ms::ANTENNA

selects the NAME of all antennae in a MeasurementSet.

89

SELECT unique ANTENNA1,ANTENNA2 FROM some.ms

gives the baselines used in a MeasurementSet.

SELECT ANTENNA1,ANTENNA2 FROM some.ms GROUPBY ANTENNA1,ANTENNA2

does the same using the GROUPBY clause.

SELECT FROM mytable ORDERBY column0 DESC limit 10

selects the 10 highest values of column0.

SELECT FROM some.MS WHERE near(MJD(1999/03/30/17:27:15), TIME)

selects the rows with the given time from a MeasurementSet.
Note that the TIME is stored in seconds, but will automatically be converted to days.

SELECT FROM some.MS where TIME in

[{MJD(1999/03/30/17:27:15),MJD(1999/03/30/17:29:15)}]
selects the rows in the given closed time interval.

SELECT FROM some.MS where TIME in

[MJD(1999/03/30/17:27:15),MJD(1999/03/30/17:29:15)]

selects the rows having one of the given times.
Note the difference with the previous example where an interval was given. Here a set of two
individual time values is given.

SELECT NAME FROM some.ms::ANTENNA WHERE NAME ! p/[CR]S*/

selects the names of the international LOFAR stations (not core or remote).

SELECT FROM some.ms WHERE ntrue(FLAG) >= 3

selects rows where at least 3 visibilities are flagged.

SELECT FROM book.table WHERE nelements(author) > 1

selects books with more than 1 author.

SELECT FROM some.ms WHERE any(ANTENNA1==[0,0,1] && ANTENNA2==[1,3,2])

selects the antenna pairs (baselines) 0-1, 0-3, and 1-2.
It requires some explanation. The two comparisons result in boolean vectors (with 3 elements).
It matching elements are both true, the baseline in the table row matches. Thus the vectors are
and-ed to see if any two matching elements are true.

SELECT FROM some.ms WHERE ANTENNA1 in [0,0,1] && ANTENNA2 in [1,3,2])

looks the same as above, but will select all baselines between the two sets, thus also 1-1, 1-3,
and 0-2.

SELECT FROM some.ms t1, that.ms t2 WHERE !all(near(t1.DATA, t2.DATA, 1e-5))

selects all rows where the DATA columns in both tables are not equal (with some tolerance).
Note the use of shorthands t1 and t2.

SELECT FROM mytable WHERE cos(0d1m) <=

sin(52deg) * sin(DEC) + cos(52deg) * cos(DEC) * cos(3h30m - RA)

selects observations with an direction (in say J2000) inside a cone with a radius of 1 arcmin
around (3h30m, 52deg). To find them the condition DISTANCE<=RADIUS must be fulfilled,
which is equivalent to COS(RADIUS)<=COS(DISTANCE).

90

SELECT FROM mytable WHERE [RA,DEC] INCONE [3h30m, 52deg, 0d1m]

does the same as above in an easier (and faster) way.

SELECT FROM mytable WHERE angdist([RA,DEC], [3h30m, 52deg]) <= 0d1m]

is another way to do the above.

SELECT FROM mytable WHERE object == pattern("3C*") &&

[RA,DEC] INCONE [3h30m, 52deg, 0d1m]

finds all 3C objects inside that cone.

SELECT ANTENNA1,ANTENNA2,sqrt(sumsqr(UVW[:2]))

FROM some.ms GROUPBY ANTENNA1,ANTENNA2

finds the 10 longest baselines. It groups by ANTENNA1 and ANTENNA2 to get the unique
baselines. UVW[:2] denotes the U and V coordinate giving the projected baseline length.

select NAME, sqrt(sumsqrs([select POSITION from my.ms/ANTENNA] -

resize(POSITION,[[select gcount() from my.ms/ANTENNA][0],3],1), 1))

from my.ms/ANTENNA

yields a matrix of the lengths of all baselines in my.ms.
- The first inner select gets the POSITION of all antennae from which the POSITION in each
row is subtracted (giving all baselines for each antenna).
- The second inner select gets the numbe r of antennae. It is used in the resize function (using
mode 1 to copy the values) to make the arrays in the subtraction the same shape. TaQL does
not do axes broadcasting as numpy does.
- The sumsqrs function calculates x**2+y**2+z**2 for each baseline (it collapses axes 1), where-
after sqrt gives their lengths.

select from MY.MS where DATA DESC ID in [select from ::DATA DESCRIPTION where

SPECTRAL WINDOW ID in [0,2,4] giving [ROWID()]]

finds all rows in a measurement set matching the given spectral windows. It uses a nested query
to find the DATA DESC ID for each spectral window.

select from MY.MS where TIME in [select from ::SOURCE where REST FREQUENCY < 180MHz

giving [TIME-INTERVAL/2 =:= TIME+INTERVAL/2]]

finds all rows in a measurement set observing sources with a rest frequency less than 180 Mhz.

select from VLA.MS,

[select from VLA.MS where sumsqr(UVW[:2]) < 625] as TIMESEL

where TIME in [select distinct TIME from TIMESEL]

&& any([ANTENNA1,ANTENNA2] in [select from TIMESEL giving

[iif(UVW[2] < 0, ANTENNA1, ANTENNA2)]])

selects rows where an antenna (VLA has 25 m diameter) is shadowed.
The query in the FROM command finds all rows where an antenna is shadowed (i.e., its UV-
distance less than 25 meters) and creates a temporary table. This selection (named TIMESEL)
is done first otherwise two 2 equal selections are needed in the main WHERE command. The
last line determines which antenna is shadowed (based on the W coordinate). The two lines
above selects the times and baselines where an antenna is shadowed.

select from MS

where DATA DESC ID in [select from ::DATA DESCRIPTION

where SPECTRAL WINDOW ID in [select from ::SPECTRAL WINDOW

91

where NET SIDEBAND==1 giving [ROWID()]] giving [ROWID()]]

finds all rows in the MeasurementSet with the given NET SIDEBAND.
The MeasurementSet uses a table to map spectral-window-id to data-desc-id. Hence two nested
subqueries are needed.

select findcone(REFERENCE DIR[0,],

[16h34m33.805,62d45m36.83, 12h29m06.7,2d3m9], 1arcsec)

from MS/FIELD

compares the direction given in the first argument with the directions given in the second function
argument using the search radius given in the third argument. It returns the index of the first
matching cone (thus 0 or 1). If no cone matches, it returns -1.
It can be used in the following example to find the name of the source matching a direction.

select [’unknown’,’3C343’,’3C273’][1+findcone(...)] from MS/FIELD where ... is the find-
cone argument list given in the previous example. 1 is added to cope with the case that no cone
matches.

13.1.2 Plain table results

The following examples result in a plain table, thus in a deep copy of the query results, because the
column-list contains an expression or a data type.

SELECT column0+column1 FROM mytable

creates a table of 1 column with name Col 1. Its data type is on the expression data type.

SELECT column0+column1 Res I4 FROM mytable

creates a table of 1 column with name Res. Its data type is a 4 byte signed integer.

SELECT colx colx R4 FROM mytable

creates a table of 1 column with name colx. The sole purpose of this selection is to convert the
data type of the column.

SELECT means(DATA,0) AS DATA MEAN C4 FROM my.ms

creates a table of 1 column with name DATA MEAN. Column DATA in a Casacore MeasurementSet
is a 2-dimensional array with axes polarization and frequency. This command calculates and
stores the mean in each polarization. If no data type was given, the means would have been
stored as double precision complex (which is the expression data type).
Note that this command is valid when using python style; in glish style MEANS(DATA,2) should
be used.

13.2 Modification examples

update MY.MS set VIDEO POINT=MEANS(DATA,2) where isdefined(DATA)

sets the VIDEO POINT of each correlation to the mean of the DATA for that correlation. Note
that the 2 indicates averaging over the second axis, thus the frequency axis.

update MY.MS set FLAG ROW=T where isdefined(FLAG) && all(FLAG)

sets FLAG ROW in the rows where the entire FLAG array is set.

delete from MY.MS where FLAG ROW

deletes all flagged rows.

92

insert into MY.MS select from OTHER.MS where !FLAG ROW

copies all unflagged rows from OTHER.MS to MY.MS.

insert into MY.MS/DATA DESCRIPTION

(SPECTRAL WINDOW ID,POLARIZATION ID,FLAG ROW)

values (1,0,F)

adds a row to the DATA DESCRIPTION subtable and initializes it.

13.2.1 Applying running median to an image

The following command shows how a running median can be applied to a Casacore image.

update my.imgd set map = map - runningmedian(map,25,25))

The running medians are subtracted from the data in the copy. It uses a half window size of 25x25,
thus the full window is 51x51.
When doing this, one should take care that in case of a spectral line cube the image is not too large,
otherwise it won’t fit in memory. If too large, it should be done in chunks like:

update my.imgd set map[,,sc:ec,] =

map[,,sc:ec,] - runningmedian(map[,,sc:ec,],25,25)’)

where sc and ec are the start and end frequency channel. In this example it is assumed that the axes
of the image are RA, DEC, freq, Stokes.
Note that the image is updated, so it should have been copied before if the original data needs to be
kept.

13.3 Table creation examples

create table mytab (col1 I4, col2 I4, col3 R8)

creates table mytab of 3 scalar columns.

create table mytab

creates an empty table.

create table mytab colarr R4 ndim=0

creates a table of 1 array column with arbitrary dimensionality.

create table mytab colarr R4 [shape=[4,128], dmtype=’TiledColumnStMan’]

creates a table of 1 array column with the given shape. The column is stored with the Tiled-
ColumnStMan storage manager using its default settings.

create table mytab colarr R4 shape=[4,128]

dminfo [TYPE=’TiledColumnStMan’, NAME=’TCSM’,

SPEC=[DEFAULTTILESHAPE=[4,32,64]], COLUMNS=[’colarr’]]

creates a table of 1 array column with the given shape. The column is stored with the Tiled-
ColumnStMan storage manager using the given settings.

93

13.4 Calculation examples

calc 1+2

uses TaQL as a desktop calculator.

calc 7-Apr-2007 - 20-Nov-1979

calculates the number of days between these dates.

calc sum([select from MY.MS giving [ntrue(FLAG)]])

determines the total number of flags set in the measurement set.

calc mean(abs(DATA))

from [select from MY.MS where ANTENNA1==0]

calculates for each row the mean of the data for the selected subset of the measurement set.

calc mean([select from MY.MS where ANTENNA1==0

giving [mean(abs(DATA))]])

looks like the previous example. It, however, calculates the mean of the mean of the data in
each row for the selected subset of the measurement set.

calc max([select from MY.MS where isdefined(DATA)

giving [max(abs(VIDEO POINT-MEANS(DATA,0)))]])

shows the maximum absolute difference between VIDEO POINT of each correlation and the
mean of the DATA for that correlation. Note that the 2 indicates averaging over the first axis,
thus the frequency axis.

13.5 Aggregation/groupby examples

select gcount(*) from my.ms

counts the number of rows in the table.

select TIME, gcount(*) from my.ms groupby TIME

counts the number of rows (usually number of baselines) per time slot.

select ANTENNA1,ANTENNA2,gfirst(TIME),glast(TIME),gcount()

from my.ms groupby ANTENNA1,ANTENNA2

counts the number of rows (usually number of time slots) and shows the first and last time per
baseline.

select gmean(DATA) from my.ms

groupby int((TIME - [select TIME from my.ms limit1][0]) / INTERVAL / 10))

calculates the average of DATA for every 10 time slots. Note it also averages in frequency and
polarization. The following example shows how to average each frequency channel and polariza-
tion.

select boxedmean(gaggr(DATA), 10, 4) from my.ms

groupby int((TIME - [select TIME from my.ms limit1][0]) / INTERVAL / 10))

calculates the average of DATA per polarization for every 10 time slots and 4 frequency chan-
nels. Note it it first combines the data of each 10 time slots in a single array, after which the
boxedmean function is used to average every [10,4,1] box.

94

13.5.1 Obtaining the flux density from visibility data

The Miriad program uvflux estimates the source I flux density and its standard deviation at the phase
center without having to make an image. A single, not too complicated TaQL command (courtesy
Dijkema, Heald) provides the same functionality on a MeasurementSet using the XX and YY data.
For LOFAR it is best to use baselines with a length between 5 and 10 km. The command shows
various aspects of TaQL that are explained below. The numbers at the beginning of the lines point
to the text following the example.

4. select gstddev(SUMMED) as STDVALS,

4. gmean(SUMMED) as MEANVALS,

4. gcount(SUMMED) as NVALS

1. from (select

3. gmean(abs(DATA[::3][FLAG[::3]])) as SUMMED

from ~/data/GER.MS

2. where mscal.baseline("5km~10km") && !all(FLAG)

3. groupby TIME)

A subquery is used to get the average flux (I = 0.5*(XX+YY)) per time slot.

1. This is the subquery. The outer query operates on the result of it.

2. It only uses the baselines with lengths between 5 and 10 km where not all visibilities are flagged.
Note that a mscal user defined function is used for the baseline selection as described in section
4.10.17.

3. Per time slot the average flux of all unmasked XX and YY data is determined using the gmean

aggregation and GROUPBY functionality. The result is an intermediate table with one column
called SUMMED and a row per time slot. Note that XX is the 1st and YY the 4th polarisation,
hence [0:4:3] (or [::3]) indexes these polarisations.

4. Finally, the outer query uses aggregate functions to calculate the overall mean, standard devia-
tion, and number of time slots from the result of the subquery. The final result is a table with
1 row and 3 columns.

13.5.2 Number of fully flagged baselines per antenna

The example below counts per antenna the number of fully flagged baselines, excluding the autocor-
relations. It uses grouping and aggregate functions twice; first per baseline, thereafter per antenna.
It uses the concatenation and the WITH features. The timings of the various query parts are shown
by using the time keyword. It shows that the processing time is dominated by the first query on the
MeasurementSet used (which has a size of 1.3 GByte).

time with (select gcount() as cnt, ANTENNA1 as ANTENNA, ANTENNA2

from ~/data/3C343.MS

where all(FLAG) and ANTENNA1!=ANTENNA2

groupby ANTENNA1,ANTENNA2) t0

select gsum(cnt) as NR, ANTENNA,

(select NAME from ~/data/3C343.MS::ANTENNA)[ANTENNA] as NAME

from [t0,

(select cnt, ANTENNA2 as ANTENNA, 0 as ANTENNA2 from t0),

(select 0 as cnt, rowid() as ANTENNA, 0 as ANTENNA2

95

from ~/data/3C343.MS::ANTENNA)]

groupby ANTENNA orderby ANTENNA

From query 0.54 real 0.4 user 0.11 system

From query 0 real 0 user 0 system

From query 0 real 0 user 0 system

Subquery 0 real 0 user 0 system

Groupby 0 real 0 user 0 system

Orderby 0 real 0 user 0 system

Projection 0 real 0 user 0 system

Total time 0.59 real 0.4 user 0.12 system

3 selected columns: NR ANTENNA NAME

2896 0 RT0

2889 1 RT1

2893 2 RT2

2879 3 RT3

2882 4 RT4

2884 5 RT5

2882 6 RT6

2879 7 RT7

2882 8 RT8

2895 9 RT9

2896 10 RTA

2888 11 RTB

2898 12 RTC

2903 13 RTD

21555 14 RTE

21555 15 RTF

There is a lot to say about this query, which is quite complex. It shows that the WITH clause and
table concatenation are nice features.

1. The WITH part creates a temporary table with shorthand t0 containing the number of fully
flagged rows per baseline. The table also contains the antenna numbers making up a baseline.
In this way the expensive counting part needs to be executed only once.

2. The result has to be per antenna, so the temporary table has to be summed for both antennas
of the baselines. It is done by using the table twice by means of concatenation. First to use it
directly to count for ANTENNA, thereafter to count for ANTENNA2 using a select to make the
ANTENNA2 the ANTENNA column.

3. The temporary table does not contain the antennas having no fully flagged rows. Therefore the
third part of the concatenation uses the ANTENNA table to insert zero counts for all antennas.

4. Finally the final select (in the fifth line) sums the values in the concatenated table per antenna.
It also retrieves the name of an antenna by indexing in the selection of all antenna names.

96

14 Interface to TaQL

User and a programmer interfaces to TaQL are available. The program taql and some Python
and Glish functions form the user interface, while C++ classes and functions form the programmer
interface.

14.1 Python interface python-casacore

The main TaQL interface in Python is formed by the query function in module table. The function
can be used to compose and execute a TaQL command using the various (optional) arguments given
to the query function. E.g.

import casacore.tables as pt

tab = pt.table(’mytable’)

seltab1 = tab.query (’column1 > 0’)

seltab2 = seltab1.query (query=’column2>5’,

sortlist=’time’,

columns=’column1,column2’,

name=’result.tab’)

The first command opens the table mytable. The second command does a simple query resulting in
a temporary table. That temporary table is used in the next command resulting in a persistent table.
The latter function call is transformed to the TaQL command:

SELECT column1,column2 FROM \$1 WHERE column2>5

ORDERBY time GIVING result.tab

During execution $1 is replaced by table seltab1.
Note that the name argument generates the GIVING part to make the result persistent.

The functions sort and select exist as convenience functions for a query consisting of a sort or
column selection only. Both functions have an optional second name parameter to make the result
persistent.

t1 = tab.sort (’time’)

t1 = tab.select (’column1,column2’)

The calc function can be used to execute a TaQL calc command on the current table. The result
can be kept in a variable. For example, the following returns a vector containing the median of the
DATA column in each table row:

med = t.calc (’median(DATA)’)

It is possible to embed Python variables and expressions in a TaQL command using the syntax
$variable and $(expression). A variable can be a standard numeric or string scalar or vector. It
can also be a table tool. An expression has to result in a numeric or string scalar or vector. E.g

from casacore.tables import *

tab = table(’mytable’)

coldata = tab.getcol (’col’);

colmean = sum(coldata) / len(coldata);

seltab1 = tab.query (’col > $colmean’)

seltab2 = tab.query (’col > $(sum(coldata)/len(coldata))’)

seltab3 = tab.query (’col > mean([SELECT col from $tab])’)

97

../../../pyrap/docs/pyrap_tables.html#pyrap.tables.table.query
../../../pyrap/docs/pyrap_tables.html

These three queries give the same result.
The substitution mechanism is described in more detail in pyrap.util.

The most generic function that can be used is taql (or its synonym tablecommand). The full TaQL
command has to be given to that command. The result is a table object. E.g.

import pyrap.tables as pt

t = pt.taql(’select from GER.MS where ANTENNA1==1’);

By default, these commands will use the Python style for a TaQL statement. The style argument
can be used to choose another style.

14.2 Interface to Glish

The Glish interface is formed by script table.g. By default, it will use the Glish style for a TaQL
statement. For example:

include ’table.g’

tab := table(’mytable’)

seltab1 := tab.query (’column1 > 0’)

seltab2 := seltab1.query (query=’column2>5’,

sortlist=’time’,

columns=’column1,column2’,

name=’result.tab’)

t := tablecommand(’select from GER.MS where ANTENNA1==1’,

style=’’); # use default (glish) style

med := t.calc (’median(DATA)’)

14.3 Program taql

The program taql makes it possible to execute TaQL commands from the shell. Commands can be
given in different ways:

• A TaQL command can be given directly as command line arguments to the taql program. The
arguments will be combined to a single command (separated by spaces). Note that using multiple
arguments instead of a single (quoted) argument makes it easier to use tab-completion for the
table name. It will execute the command, show the result, and exit.

• Using the -f option, the name of a file containing one or more TaQL commands can be given. The
commands can be split over multiple lines, where a # can be used for comments. A semicolon
has to be used to separate commands. This can be nested arbitrarily deep, thus a command file
can execute another command file using a -f option.

• The program is run interactively if neither command nor -f is given. It will run until the user
stops via the command exit, quit, or q or by giving Ctrl/D. Command editing and recall is
possible, unless taql was built without readline support. Of course, a file can be used as input
by redirection to stdin. This is more or less the same as using -f, but a command cannot be split
over multiple lines and no semicolon is needed to separate commands. Interactive commands
are kept in $HOME/.taql history making command recall possible across multiple taql sessions.

The commands can be given in a fully recursive way. For example, a command in an input file can
invoke another TaQL command file using -f.
The following commands can be given:

98

../../../pyrap/docs/pyrap_util.html
../../../pyrap/docs/pyrap_tables.html#pyrap.tables.taql

• h, -h, or --help shows brief help information about the taql program itself.

• v shows the taql version.

• o shows the current options settings (see below) on stderr.

• A full TaQL command. Note that the command help or show shows help info about the TaQL
syntax and functionality.

• A full TaQL command preceded by varname=, where varname is the name under which the
resulting table is kept in this session. Thus the result is not a persistent table (unless GIVING
was given), but it is kept temporarily. The varname can be used in subsequent commands such
as SELECT FROM $varname or SHOW TABLE $varname.
If a command is not recognized, it is assumed an expression is given with an implicit SELECT. In
this way it is easily possible to calculate expressions. Note that multiple expressions (separated
by a comma) can be given, because it is the very same as selecting multiple column expressions
in TaQL’s SELECT command.

• ? shows the varnames.

• varname= without a further command removes the temporary result.

• varname shows the number of rows in the temporary result. It can be followed by one or more
question marks to show the column names and details about them.
Note that if an unknown varname is given, it is treated as a TaQL command resulting in a parse
error.

• Comments can be given after the hash (#) character. Empty lines are ignored.

A command can be preceded by zero or more options to specify if, how and where the results of a
TaQL selection are printed. The options can be given at various levels:

• The initial default options can be overridden by the options given when starting the taql program.
These are global settings and used for all subsequent TaQL commands.

• A TaQL command can be preceded by options to override the global settings for that TaQL
command only. However, when only giving options on a command line, they are persistent, thus
new global settings are defined.

• The options usage in a TaQL command file behaves in a similar way. The initial option values are
the settings of the level above which can be overridden temporarily or permanently by options
on the command lines in the file. A nested command file inherits the settings from the level
above. Note that persistent options settings do not go upwards.

The output of a TaQL command can be printed. Most commands (such as UPDATE) will only
show the expanded command and the number of rows affected. However, the CALC and SELECT
command can also show the the results of the selected expressions.
The result of a CALC command is always printed.
Selected columns in a SELECT command are optionally printed. If an implicit SELECT is done (thus
if SELECT was added to the command) or if -ps is in effect, all results are printed. Otherwise if -pa
is in effect, the first N rows are printed where N is defined by the -m option.

The following print options are available.

99

• -ps or --printselect defines if all rows of selected columns will be printed. Note that all rows
of an implicit SELECT are always printed.

• -pa or --printauto defines if auto printing is in effect meaning that only the first N rows of
selected columns are printed. N is defined by the -m option.

• -pm or --printmeasure defines if values with a reference frame (such as times, positions, direc-
tions, ...) are pretty printed. Note that TaQL’s str function offers very flexible pretty printing.

• -ph or --printheader defines if a header will be printed consisting of the names of the selected
columns.

• -pc or --printcommand defines if the expanded TaQL command (as executed) will be printed.

• -pr or --printnrows defines if the number of rows handled by the command will be printed.

• -p or --printall defines all 5 print options (except -pa) above.

• -m defines the maximum number of rows to print if auto printing is used. It defaults to 50.

• -d separator defines the separator between printed columns. The default is a tab.

• -o filename defines the file in which to write the output. stdout and stderr are special names.
Default is stdout.

All -p options can be preceded by no to negate settings.
The initial default settings are ’-nops -pa -ph -pm -nopc -pr -m 50’.
Note that an implicit SELECT always uses -noph -nopc -nopr regardless of their settings.
A few other options are available.

• -s style or --style style defines the default TaQL style. It defaults to ’python’.

• -h or --help shows the help about the taql program (same as command h).

• -v or --version shows the taql version (same as command v).

• -f filename executes the TaQL commands in the given file.

Note that ’–’ can be used to indicate the end of the options. This can be useful if the following TaQL
command starts with a minus sign.

For example:

taql ’cos(pi())’

-1

taql -d xx 1,2

1xx2

taql -f t.cmd # execute commands in file t.cmd

taql # start interactive session

o # show options

help # help about TaQL commands

h # help about taql program

-f t.cmd # execute commands in file t.cmd

cos(pi())

unique TIME from an.ms # implicit SELECT with printing

100

-ps select unique TIME from an.ms # explicit SELECT with printing

select unique TIME from an.ms # SELECT with auto printing

-ps # persistently set to print SELECT results

select unique TIME from an.ms # explicit SELECT with printing

q # stop interactive session

14.4 C++ interface

The C++ programmer can use TaQL commands and expressions at various levels,

14.4.1 TaQL query string

The function tableCommand in TableParse.h can be used to execute a TaQL command. The result
is a TaQLResult object. Its function isTable() tells if the result contains a Table object or an
TableExprNode object. The latter results from a CALC command. . E.g.,

TaQLResult result1 = tableCommand

("select from mytable where column1>0");

AlwaysAssertExit (result1.isTable());

Table seltab1 = result1.table();

Table seltab2 = tableCommand

("select column1,column2 from $1 where column2>5"

" orderby time giving result.tab", seltab1).table();

These examples do the same as the Python ones shown above.
Note that in the second function call the table name $1 is replaced by the object seltab1 passed to
the function.
There is no style argument, so if an explicit style is needed it should be the first part of the TaQL
statement. Note that the Glish style is the default style.

14.4.2 Expression string

The function parse in RecordGram.h can be used to parse a TaQL expression. The result is a
TableExprNode object that can be evaluated for each row in the table. E.g.

Table tab("mytable");

TableExprNode expr = RecordGram::parse (tab, "column1>0");

Table seltab1 = tab(expr);

The example above does the same as the first example in the previous section. There are, however,
better ways to use this functionality.

Table tab("somename");

TableExprNode expr = RecordGram::parse (tab, "ANTENNA1=1");

for (uInt row=0; row<tab.nrow(); ++row) {

if (expr.getBool(row)) {

// expression is true for this row, so do something ...

}

}

101

../html/classcasa_1_1TableParse.html
../html/classcasa_1_1TaQLResult.html
../html/classcasa_1_1Table.html
../html/classcasa_1_1TableExprNode.html
../html/classcasa_1_1RecordGram.html
../html/classcasa_1_1ExprNode.html

The example above shows a boolean scalar expression, but it can also be a numeric expression or an
array expression as shown in the example below. Note that TaQL expression results have data type
Bool, Int64, Double, DComplex, String, or MVTime.

TableExprNode expr = RecordGram::parse (tab, "abs(DATA)");

Array<Double> data;

for (uInt row=0; row<tab.nrow(); ++row) {

expr.get (row, data);

}

Class RecordGram can also be used to apply TaQL to C++ vectors of values or Records. The
RecordGram class documentation and its test program describe these features in more detail.

14.4.3 Expression classes

The other expression interface is a true C++ interface having the advantage that C++ variables can
be used directly. Class Table contains functions to sort a table or to select columns or rows. When
selecting rows class TableExprNode (in ExprNode.h) has to be used to build a WHERE expression
which can be executed by the overloaded function operator in class Table. E.g.

Int limit = 0;

Table tab ("mytable");

Table seltab = tab(tab.col("column1") > limit);

does the same as the first example shown above. See classes Table, TableExprNode, and TableExprN-
odeSet for more information on how to construct a WHERE expression.

15 Writing user defined functions

A C++ user defined function has to be written as a class derived from the abstract base class UDFBase.
The documentation of this base class describes how to write a UDF. Furthermore one can look at class
UDFMSCal that contains the UDFs described in subsection User defined functions.

It is possible to write a UDF that operates on an individual expression (for each table row) and
returns the result. It is, however, also possible to write a UDF acting as an aggregate function. In
that case it will return a result based on the values of all rows in a group. See the desription of the
GROUPBY clause for more information on the GROUPBY clause and aggregate functions.

Note that a class can contain multiple UDFs as done in UDFMSCal. Also note that a single UDF
can operate on multiple data types which is similar to a function like min that can operate on scalars
and arrays of different data types.

A UDF class can contain a HELP function, which should return help information. This function is
called by a help command like

show function meas [subtype]

It returns an overview of the functions in the UDF class and possible other information. The optional
subtype argument can be used to return more specific information. Note that the same result is given
by

meas.help(’subtype’)

102

../html/classcasa_1_1Table.html
../html/classcasa_1_1TableExprNode.html
../html/classcasa_1_1Table.html
../html/classcasa_1_1TableExprNode.html
../html/classcasa_1_1TableExprNodeSet.html
../html/classcasa_1_1TableExprNodeSet.html
../html/classcasa_1_1UDFBase.html
../html/classcasa_1_1UDFMSCal.html

TaQL finds a UDF by looking in a dictionary mapping the UDF name to a function constructing an
object of the UDF class. If not found, it tries to load the shared library with the lowercase name of the
library part of the UDF (like in derivedmscal.pa1). If the load is successful, it calls an initialization
function in the shared library that should add all UDF functions in the library to the dictionary. The
description of the UDFBase class shows how this should be done.

15.1 UDFs in Python

NOTE: This section is for a future version of TaQL. It has not been fully implemented yet.
For performance reasons User Defined Functions will usually be implemented in C++. It is,

however, possible to implement them in Python, both regular functions and aggregate functions. This
can be done by means of the pytaql module of Casacore.

A UDF has to be implemented in Python by subclassing pytaqlbase, that can be imported from
Casacore.python. The subclass has to implement a few functions, some are optional. The functions
are called in the order given below.

• init (self)

The class constructor must call the init function of the superclass.

• needTable(self)

This optional function tells if the UDF needs the Table object of the table being queried. If
True is returned, the function setTable is called thereafter. The Table object can be used by
UDFs needing extra info (e.g., keywords) from the table being queried or from its subtables
(comparable to derivedmscal). It requires the import of pyrap.tables at the beginning of the
UDF script.

• setTable(self, tab)

This function makes it possible to keep the Table object. It must be implemented if needTable
returns True. The object should be kept like:

self.tab = pyrap.tables.table (tab, _oper=3)

• setup(self, valuetypes, datatypes, units)

This function is called once at the beginning. It gets the value types, data types, and units of
the function arguments. The length of the sequences tells the number of arguments.

valuetypes int seq value type of each argument

0=scalar 1=array 2=set

datatypes int seq data type of each argument

0=bool 1=int 2=float 3=complex

4=string 6=date

units strings unit of each argument (empty=no unit)

The UDF should check if the argument types are correct and determine the result type. It has
to return a dict containing the following fields:

ndim int dimensionality of result

-1=scalar 0=unknown

shape int seq shape (if fixed, otherwise empty sequence)

103

../html/classcasa_1_1UDFBase.html

dtype int data type of result

unit string optional unit of result

isaggr bool True = UDF is aggregate function

• getValue(self, argValues, rownr)

This function must return the function value for the given argument values. It is only called if
setup does not set isaggr=True. Normally the rownr argument is not needed, but it could be
used to obtain special info from the Table object for that row.

• getAggrValue(self, rownrs)

This function must return the value of the aggregate function for the given rows. The argument
values are not passed, because their sizes may exhaust memory. Instead the list of row numbers
in the aggregation group are given. For each row the following function must be called to get a
list of the argument values for that row.

getArgValues(self, rownr)

Such a UDF can be called in TaQL like py.module.class where the class defaults to the module
name.
An example of UDFs in Python is given below. The first one is a regular UDF, the second one an
aggregate UDF.

tpytaql.py: Test script for pytaqlbase

from casacore.pytaqlbase import pytaqlbase

##import pyrap.tables as pt

class tpytaql(pytaqlbase):

"""

A test (and example) for a pytaql UDF.

It returns the sum of the values in the argument.

"""

def __init__(self):

""" The constructor must call the __init__ in the base class. """

pytaqlbase.__init__(self)

def setup(self, valuetypes, datatypes, units):

""" Setup the pytaql object. """

if len(valuetypes) != 1:

raise ValueError("UDF tpytaql should have exactly 1 argument")

self.isScalar = valuetypes[0]==0

return {’ndim’:0, ’dtype’:datatypes[0], ’unit’:units[0]}

def getValue(self, argValues, rownr):

""" Get the value of the function for the given table row. """

if self.isScalar:

return argValues[0];

return argValues[0].sum() # sum of numpy array

104

class tpytaqlaggr(pytaqlbase):

"""

A test (and example) for a pytaql aggregation UDF.

It returns the difference of the total of both arguments.

"""

def __init__(self):

""" The constructor must call the __init__ in the base class. """

pytaqlbase.__init__(self)

The following functions show how to get and keep a Table object.

Note the import of pyrap.tables is also required.

def needTable(self):

return True

def setTable(self, tab):

self.tab = pt.table(tab, _oper=3)

print "nrows",self.tab.nrows()

def setup(self, valuetypes, datatypes, units):

""" Setup the pytaql object. """

if len(valuetypes) != 2:

raise ValueError("tpytaqlaggr UDF should have exactly 2 arguments")

self.isScalar0 = valuetypes[0]==0

self.isScalar1 = valuetypes[1]==0

return {’ndim’:0, ’dtype’:datatypes[0],

’unit’:units[0], ’isaggr’:True}

def getAggrValue(self, rownrs):

""" Get the value of the aggregate function for the given table rows. """

v = 0;

for rownr in rownrs:

argValues = self.getArgValues (rownr);

if self.isScalar0:

v += argValues[0];

else:

v += argValues[0].sum()

if self.isScalar1:

v -= argValues[1];

else:

v -= argValues[1].sum()

return v

16 Possible future developments

In the near or far future TaQL can be enhanced by adding new features and by doing optimizations.

105

• Add ROLLUP/CUBE to the GROUPBY clause.

• Implement the OVER/PARTITION clause.

• Add explicit JOIN clause (probably only equi-joins).

• Add UNION, INTERSECTION, and DIFFERENCE.

• Handle invalid subexpressions (e.g., exceeding array bounds) as null arrays which can be tested
with the function ISNULL.

106

	Introduction
	TaQL vs SQL

	TaQL Commands
	Command summary
	Using a style
	UDF library synonyms
	Tracing
	Timing

	Reserved words

	Making of a selection from a table
	Selection from a table
	Column/keyword lookup

	WITH table_list
	SELECT column_list
	Wildcarded SELECT columns
	Expressions in SELECT column_list
	Masked array in column_list

	INTO [table] [AS options]
	FROM table_list
	Joining tables
	JOIN clause
	Join on row number
	Join using an indexed subquery
	Join using a subquery set
	Join using derivedmscal

	WHERE expression
	GROUPBY group_list
	HAVING expression
	ORDERBY sort_list
	LIMIT/OFFSET expression
	GIVING [table] [AS options] | set

	Expressions
	Data Types
	Regular Expressions and String Distances
	Constants
	Bool
	Integer
	Double (and time/position)
	Complex
	String
	Regular expression and String distance
	Date/time
	Arrays
	Masked Arrays
	Null Arrays

	Table Columns
	Referring to SELECT columns

	Table Keywords
	Operators
	Sets and intervals
	Array Index Operator
	Units
	Functions
	String functions
	Regex functions
	Date/time functions
	Pretty printing functions
	Comparison functions
	Mathematical functions
	Array to scalar reduce functions
	Array to array reduce functions
	Array downsampling functions
	Array functions operating in running windows
	Type conversion functions
	Array creation functions
	Aggregate functions
	Miscellaneous functions
	Cone search functions
	User defined functions
	Special MeasurementSet functions
	Special Measures functions

	Subqueries

	Aggregation, GROUPBY, HAVING
	Aggregation and GROUPBY
	HAVING

	Some further remarks
	Optimization

	Modifying a table
	UPDATE
	Partial Array Update
	Update columns from a masked array

	INSERT
	DELETE

	Creating a new table
	Column specification
	Data manager specification

	Removing a new table
	Modifying the table structure
	ADD COLUMN
	COPY COLUMN
	RENAME COLUMN
	DELETE COLUMN
	SET KEYWORD
	COPY KEYWORD
	RENAME KEYWORD
	DELETE KEYWORD
	ADD ROW

	Counting in a table
	Calculations on a table
	Examples
	Selection examples
	Reference table results
	Plain table results

	Modification examples
	Applying running median to an image

	Table creation examples
	Calculation examples
	Aggregation/groupby examples
	Obtaining the flux density from visibility data
	Number of fully flagged baselines per antenna

	Interface to TaQL
	Python interface python-casacore
	Interface to Glish
	Program taql
	C++ interface
	TaQL query string
	Expression string
	Expression classes

	Writing user defined functions
	UDFs in Python

	Possible future developments

